I am trying in this code to solve three non-linear ODEs together, and I want to plot the three functions as functions of η.
Why does my code not work?
α=0.2;We=3.;n=0.5;M=0.5;b=0.1;Pr=2.;ε=0.2;Ec=0.2;Λ1=0.1;Λ2=0.8;Le=1.;f0=-0.1; (* Solve the system using NDSolve *) soln = NDSolve[{ (* First Equation: Momentum *) Exp[-α θ[η]]*(1 + We^2 (f''[η])^2)^((n - 3)/2)* (-α θ'[η] f''[η] (1 + We^2 (f''[η])^2) + (1 + n We^2 (f''[η])^2) f'''[η]) + (b/2 η + f[η]) f''[η] + (b - M - f'[η]) f'[η] + (M - b + 1) == 0, (* Second Equation: Energy *) (1/Pr) (ε θ'[η]^2 + (1 + ε θ[η]) θ''[η]) + (f[η] θ'[η] - f'[η] θ[η]) - Ec (f''[η])^2 Exp[-α θ[η]] * (1 + We^2 (f''[η])^2)^((n - 1)/2) + (b/2) (θ[η] - η θ'[η]) - Λ1 θ'[η]^2 - Λ2 θ'[η] ϕ'[η] == 0, (* Third Equation: Concentration *) ϕ''[η] + Pr Le (f[η] ϕ'[η] - f'[η] ϕ[η] - b/2 (ϕ[η] - η ϕ'[η])) + (Λ1/Λ2) θ''[η] == 0, (* Boundary Conditions at η = 0 *) f[0] == -f0, f'[0] == 0, θ[0] == 1, ϕ[0] == 1, (* Boundary Conditions as η → ∞, approximated at η = 50 *) f'[50] == 1, θ[50] == 0, ϕ[50] == 0 }, {f, θ, ϕ}, {η, 0, 50}]; (*Plot ϕ(η)*) plot1 = Plot[Evaluate[{ϕ[η]} /. soln], {η, 0, 50}, Frame -> True, PlotLegends -> {"ϕ(η)"}, PlotLabel -> "Concentration Profile ϕ(η)"]; 





