I have the following code:
solution = NDSolve[{5269.333333333333` Cos[a[t]] + 1.` Cos[a[t]] l[t] + 83.33333333333333` Cos[a[t] - c[t]] Derivative[1][c][t]^2 + 172.66666666666666` Derivative[2][a][t] + 8.` Cos[a[t] + b[t]] Derivative[2][b][t] == 8.` Sin[a[t] + b[t]] Derivative[1][b][t]^2 + 83.33333333333333` Sin[a[t] - c[t]] Derivative[2][c][t], Cos[b[t]] l[t] + 6 Cos[a[t] + b[t]] Derivative[2][a][t] + 8 Derivative[2][b][t] == 64 Cos[b[t]] + 6 Sin[a[t] + b[t]] Derivative[1][a][t]^2, 1.` Sin[c[t]] + 0.015625` Derivative[2][c][t] == 0.03125` Cos[a[t] - c[t]] Derivative[1][a][t]^2 + 0.03125` Sin[a[t] - c[t]] Derivative[2][a][t], 6 Sin[a[t]] + 8 Sin[b[t]] == 3 Sqrt[2], 4 a[0] == \[Pi], b[0] == 0, c[0] == 0, Derivative[1][a][0] == 0, Derivative[1][b][0] == 0, Derivative[1][c][0] == 0}, {a[t], b[t], c[t], l[t]}, {t, 0., 0.25}, Method -> {"IndexReduction" -> Automatic}]; asol[t_] = a[t] /. Flatten[solution]; Print["a[0]=", asol[0] , "= and a'[t]=", Derivative[1][asol][0]] Note that I have a'[t] = Derivative[1][a][0] == 0 among the initial conditions. Yet, the output of this cell is
a[0]=0.785398= and a'[t]=6.06109 a'[t] != 0! I tried restarting Mathematica and pasting this into a new notebook, same thing. When I plot a[t], it indeed trends up instead of starting with a slope of 0. I suspect the odds of me discovering a bug in NDSolve the first time I use it are about 0 (or 0.`5) so I suspect I am not using it right.
What am I doing wrong here? Why is Mathematica giving me a solution that is NOT a solution? Any pointer appreciated.