Alternatively to MichaelE2's interesting answer you might use
`NMinimize`
J[q_?NumericQ,
m_?NumericQ] := # . # &[{q -
NIntegrate[
1/Sqrt[2 Pi] Exp[-z^2/
2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2) ]^2, {z, -Infinity, -10,
10, Infinity}, Method -> "GlobalAdaptive"],
m - NIntegrate[
1/Sqrt[2 Pi] Exp[-z^2/
2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2)], {z, -Infinity, -10, 10,
Infinity}, Method -> "GlobalAdaptive"]}]
NMinimize[ Re@J[q, m], {q, m}] // Quiet
(*{1.19349*10^-17, {q -> 0.530368, m -> 6.34778*10^-9}}*)
**addendum**
or `FixedPointList`
intqm[q_?NumericQ, m_?NumericQ] := {
NIntegrate[1/Sqrt[2 Pi] Exp[-z^2/2] Tanh[ (Sqrt[q] z + 1/2m)/(1/2)]^2, {z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"],
NIntegrate[1/Sqrt[2 Pi] Exp[-z^2/2] Tanh[ (Sqrt[q] z + 1/2m)/(1/2)],{z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"]}
FixedPointList[Apply[intqm, #] &, {1, 1}, 15]
(*{..., {0.530368, 0.0000164061}, {0.530368, 7.70484*10^-6}}*)
Both results agree well with MichaelE2's answer!