I need to obtain this using FeynCalc
$[\gamma_{0},\gamma_{i}]= 2 \gamma_{0}\gamma_{i} \\\\$, $[\gamma_{i},\gamma_{0}]= 2 \gamma_{i}\gamma_{0} \\\\$, $[\gamma_{0},\gamma_{0}]= 0$, $\gamma_{0}.\gamma_{i}.\gamma_{0}.\gamma_{i} = 1 $, $\gamma_{0}.\gamma_{i}.\gamma_{i}.\gamma_{0} = -1$ $.
My gamma matrices are:
$\gamma^{0}= \lbrace \lbrace 0, \ \ \mathbb{I}_{2\times 2} \rbrace,\lbrace \mathbb{I}_{2\times 2}, \ \ 0 \rbrace \rbrace $
$\gamma^{i}= \lbrace \lbrace 0, \ \ -\sigma^{i} \rbrace,\lbrace \sigma^{i}, \ \ 0 \rbrace \rbrace $
and
$\sigma^{1}=\lbrace \lbrace 0, \ \ 1 \rbrace,\lbrace 1, \ \ 0 \rbrace \rbrace $
$\sigma^{2}=\lbrace \lbrace 0, \ \ -i \rbrace,\lbrace i, \ \ 0 \rbrace \rbrace $
$\sigma^{3}=\lbrace \lbrace 1, \ \ 0 \rbrace,\lbrace 0, \ \ -1 \rbrace \rbrace $
I'm working in D-4 space.