Just an addition to @HenrikSchumacher`s nice answer.
Without compilation (incl. fast C-compiler) Mathematica & Gaussian quadrature evaluates ~25times faster than QP's result `aa` . Not so bad I think.
aa = modelLN2[1., 1., 1., 1., 1., 1., 1.]; // AbsoluteTiming
(* 3.81s *)
Needs["NumericalDifferentialEquationAnalysis`"];
xi = Subdivide[0. , 4.0, 10 ];
xwGauss =Flatten[Map[GaussianQuadratureWeights[9(*5*), #[[1]], #[[2]]] & ,Partition[xi, 2, 1]], 1] ;
int = Module[{AN = 1., tN = 1., tr = 1., ALN = 1. , xmf = 1., w = 1.,
y0 = 1. },
Table[AN*Exp[-(i*0.128 - 0.128)/tN] +
Exp[-(i*0.128 - 0.128)/tr]*
Total@Map[(ALN*Exp[-(1/w^2)*(Log[#[[1]]/xmf])^2]*
Exp[-#[[1]]*(i*0.128 - 0.128)]) #[[2]] &, xwGauss], {i,
1.0, 5000.0, 1.0}]
] (* 0.14s *)