Alternatively to MichaelE2's interesting answer you might use
NMinimizeJ[q_?NumericQ, m_?NumericQ] := # . # &[{q - NIntegrate[ 1/Sqrt[2 Pi] Exp[-z^2/ 2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2) ]^2, {z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"], m - NIntegrate[ 1/Sqrt[2 Pi] Exp[-z^2/ 2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2)], {z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"]}]NMinimize[ Re@J[q, m], {q, m}] // Quiet ({1.1934910^-17, {q -> 0.530368, m -> 6.3477810^-9}})
addendum
or
FixedPointListintqm =. intqm[q_?NumericQ, m_?NumericQ] := { NIntegrate[ 1/Sqrt[2 Pi] Exp[-z^2/ 2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2) ]^2, {z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"], NIntegrate[ 1/Sqrt[2 Pi] Exp[-z^2/ 2] Tanh[ (Sqrt[q] z + 1/2 m)/(1/2)], {z, -Infinity, -10, 10, Infinity}, Method -> "GlobalAdaptive"]} FixedPointList[Apply[intqm, #] &, {1, 1}, 15]
Both results agree well with MichaelE2's answer!