This is another simple way. The idea is to plot a $cos$ function, by changing its frequency and amplitude, you can adjust the twisting needed
f1[x_]:=Sqrt[x^2+1]
data=Table[z0= 1/10 Cos[50 x];z1=f1[x];{x,z0+z1},{x,-2,2,.02}];
Show[Plot[f1[x],{x,-2,2},AxesOrigin->{0,.7}],
ListLinePlot[data,PlotStyle->Red]]

This one has smaller frequency
data=Table[z0=1/10 Cos[20 x];z1=f1[x];{x,z0+z1},{x,-2,2,.02}];

[![enter image description here][1]][1]
Manipulate[
data = Table[z0 = h Cos[w x];
z1 = f1[x]; {x, z0 + z1}, {x, -2, 2, .02}];
Show[Plot[f1[x], {x, -2, 2}, AxesOrigin -> {0, .7}],
ListLinePlot[data, PlotStyle -> Red]],
{{h, .1, "amplitude"}, 0, .5, .01, Appearance -> "Labeled"},
{{w, 20, "frequency"}, 1, 100, 1, Appearance -> "Labeled"},
TrackedSymbols :> {h, w},
Initialization :>
(
f1[x_] := Sqrt[x^2 + 1];
)
]
[1]: https://i.sstatic.net/TYj5K.gif