ClearAll[regF]
regF = PolyhedronData["Dodecahedron", "RegionFunction"];
regF[x, y, z] // TeXForm
>$\scriptsize\sqrt{10 \left(5+\sqrt{5}\right)} (2 x+z)+5 \left(2+\sqrt{5}\right)\geq 0\land \sqrt{10 \left(5+\sqrt{5}\right)} (2 x+z)\leq 5 \left(2+\sqrt{5}\right)\land
\sqrt{50-10 \sqrt{5}} x+\sqrt{10 \left(5+\sqrt{5}\right)} z\leq 5 \left(\left(1+\sqrt{5}\right) y+\sqrt{5}+2\right)\land \sqrt{2 \left(5+\sqrt{5}\right)} z\leq
2+\sqrt{5}\land \sqrt{50-10 \sqrt{5}} x+5 \left(1+\sqrt{5}\right) y+\sqrt{10 \left(5+\sqrt{5}\right)} z\leq 5 \left(2+\sqrt{5}\right)\land 2 \sqrt{5 \left(5+2
\sqrt{5}\right)} x+10 y\leq \sqrt{10 \left(5+\sqrt{5}\right)} z+5 \left(2+\sqrt{5}\right)\land 2 \sqrt{5 \left(5+2 \sqrt{5}\right)} x\leq 10 y+\sqrt{10
\left(5+\sqrt{5}\right)} z+5 \left(2+\sqrt{5}\right)\land 5 \left(1+\sqrt{5}\right) y\leq \sqrt{50-10 \sqrt{5}} x+\sqrt{10 \left(5+\sqrt{5}\right)} z+5
\left(2+\sqrt{5}\right)\land z+\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}}\geq 0\land \sqrt{50-10 \sqrt{5}} x+5 \left(1+\sqrt{5}\right) y+\sqrt{10
\left(5+\sqrt{5}\right)} z+5 \left(2+\sqrt{5}\right)\geq 0\land \sqrt{10 \left(5+\sqrt{5}\right)} z\leq 2 \sqrt{5 \left(5+2 \sqrt{5}\right)} x+5 \left(2
y+\sqrt{5}+2\right)\land 10 y+\sqrt{10 \left(5+\sqrt{5}\right)} z\leq 2 \sqrt{5 \left(5+2 \sqrt{5}\right)} x+5 \left(2+\sqrt{5}\right)$
ClearAll[rotate, rotatedRegF]
rotate[t_, axis : ("xaxis" | "yaxis" | "zaxis") : "xaxis"] := RotationTransform[t,
axis /. Thread[{"xaxis", "yaxis", "zaxis"} -> IdentityMatrix[3]]] @* List;
rotatedRegF[rf_, t_, axis : ("xaxis" | "yaxis" | "zaxis") : "xaxis"][x_, y_, z_] :=
rf @@ rotate[t, axis][x, y, z]
rotatedRegF[regF, t][x, y, z] // TeXForm
>$\scriptsize\sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t)+2 x)+5 \left(2+\sqrt{5}\right)\geq 0\land \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t)+2
x)\leq 5 \left(2+\sqrt{5}\right)\land \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t))+\sqrt{50-10 \sqrt{5}} x\leq 5 \left(\left(1+\sqrt{5}\right) (y
\cos (t)-z \sin (t))+\sqrt{5}+2\right)\land \sqrt{2 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t))\leq 2+\sqrt{5}\land \sqrt{10 \left(5+\sqrt{5}\right)} (y
\sin (t)+z \cos (t))+5 \left(1+\sqrt{5}\right) (y \cos (t)-z \sin (t))+\sqrt{50-10 \sqrt{5}} x\leq 5 \left(2+\sqrt{5}\right)\land 10 (y \cos (t)-z \sin (t))+2
\sqrt{5 \left(5+2 \sqrt{5}\right)} x\leq \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t))+5 \left(2+\sqrt{5}\right)\land 2 \sqrt{5 \left(5+2
\sqrt{5}\right)} x\leq \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t))+10 (y \cos (t)-z \sin (t))+5 \left(2+\sqrt{5}\right)\land 5
\left(1+\sqrt{5}\right) (y \cos (t)-z \sin (t))\leq \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos (t))+\sqrt{50-10 \sqrt{5}} x+5
\left(2+\sqrt{5}\right)\land y \sin (t)+z \cos (t)+\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}}\geq 0\land \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin (t)+z \cos
(t))+5 \left(1+\sqrt{5}\right) (y \cos (t)-z \sin (t))+\sqrt{50-10 \sqrt{5}} x+5 \left(2+\sqrt{5}\right)\geq 0\land \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin
(t)+z \cos (t))\leq 5 \left(2 (y \cos (t)-z \sin (t))+\sqrt{5}+2\right)+2 \sqrt{5 \left(5+2 \sqrt{5}\right)} x\land \sqrt{10 \left(5+\sqrt{5}\right)} (y \sin
(t)+z \cos (t))+10 (y \cos (t)-z \sin (t))\leq 2 \sqrt{5 \left(5+2 \sqrt{5}\right)} x+5 \left(2+\sqrt{5}\right)$
rfunctions = {"regF", "rotatedRegF[regF,Pi/2]", "rotatedRegF[regF,Pi/2, \"yaxis\"]",
"rotatedRegF[regF,Pi/2, \"zaxis\"]"};
Grid[Partition[Labeled[RegionPlot3D[ToExpression[#][x, y, z],
{x, -2, 2}, {y, -2, 2}, {z, -2, 2},
PlotPoints -> 40, ImageSize -> 300,
Method -> {"ShrinkWrap" -> True}, Boxed -> False,
AxesOrigin -> {0, 0, 0}], #, Top] & /@ rfunctions, 2],
Dividers -> All]
[![enter image description here][1]][1]
**Update:** For interactive display, rendering the polyhedron once and using `GeometricTransformation` with desired transformation is faster:
ir = PolyhedronData["Dodecahedron", "ImplicitRegion"];
rp = RegionPlot3D[ir, PlotPoints -> 70];
{xaxis, yaxis, zaxis} = IdentityMatrix[3];
Panel @ Manipulate[Row[Panel[
Graphics3D[{{EdgeForm[], FaceForm[],
Cuboid[{-3, -3, -3}, {3, 3, 3}], Red, PointSize[Large],
Point[ctr]}, EdgeForm[None], FaceForm[Opacity[.5]],
GeometricTransformation[rp[[1]], RotationTransform[t, #]]},
Axes -> True, PlotRange -> {{-3, 3}, {-3, 3}, {-3, 3}},
AxesOrigin -> {0, 0, 0}, Boxed -> False, ImageSize -> 300,
PlotLabel -> #]] & /@ {xaxis, yaxis, zaxis}],
{{t, 0}, -Pi, Pi}, Paneled -> False]
[![enter image description here][2]][2]
Anchor rotation at, say, `vv = {2, 1, 1}`:
vv = {2, 1, 1};
centroid = {0.0000305046, -0.0000984894, -0.0000394806};
Manipulate[Row[Panel[
Graphics3D[{{EdgeForm[], FaceForm[],
Cuboid[{-3, -3, -3}, {3, 3, 3}], Red, PointSize[Large], Point[vv]},
Dashed, Thick, Opacity[1, Blue],
GeometricTransformation[Line[{centroid, vv}], RotationTransform[t, #, vv]],
EdgeForm[None], FaceForm[Opacity[.5]],
GeometricTransformation[rp[[1]], RotationTransform[t, #, vv]]},
Axes -> True,
PlotRange -> {{-6, 6}, {-6, 6}, {-6, 6}},
AxesOrigin -> {0, 0, 0}, Boxed -> False, ImageSize -> 300,
PlotLabel -> #]] & /@ {xaxis, yaxis, zaxis}],
{{t, 0}, -Pi, Pi}, Paneled -> False]
[![enter image description here][3]][3]
[1]: https://i.sstatic.net/z3rBV.png
[2]: https://i.sstatic.net/lx8GV.gif
[3]: https://i.sstatic.net/4P48n.gif