Wolfram Language conference in St. Petersburg

Two weeks ago (June 1st and 2nd) I participated in the Wolfram Language conference in St. Petersburg, Russia.
Here are the corresponding announcements:

The conference was co-organized by Kirill Belov and Petr Genadievich Tenishev.

Link to the GitHub repository with my conference presentation materials.

Here is a mind-map of the potential presentations Kirill and I discussed:

System dynamics presentation

I presented “Динамические системы : Расширение и улучшение эпидемиологических моделей”
(in English: “Dynamics systems: extending and improving epidemiological models”.)

The main presentation slides had a dozen supplements:

Making two presentations

Interestingly, I first prepared a Latent Semantic Analysis (LSA) talk, but then found out that the organizers listed another talk I discussed with them, on extending dynamic systems models. (The latter one is the first we discussed, so, it was my “fault” that I wanted to talk about LSA.)

Here are the presentation notebooks for LSA in English and Russian .

Some afterthoughts

  • Тhe conference was very “strong”, my presentation was the “weakest.”
    • With “strong” I refer to the content and style of the presentations.
  • This was also the first scientific presentation I gave in Russian. I also got a participation diploma .

to demonstrate generation of epidemiological modeling code.

  • Preparing for the conference reminded me of some the COVID-19 modeling hackathons I participated in.
  • I prepared the initial models of artillery shells manufacturing, but much more work has to be done in order to have a meaningful article or presentation. (Hopefully, I am finishing that soon.)

References

Articles, posts, presentations

[AA1] Антон Антонов,
“Динамические системы : Расширение и улучшение эпидемиологических моделей” .

[AA2] Антон Антонов,
“COVID-19 modeling over Botswana” ,

[AA3] Anton Antonov,
“WirVsVirus 2020 hackathon participation” ,
(2020),
MathematicaForPrediction at WordPress .

How to simplify Machine learning workflows specifications? (useR! 2020)

Introduction

This blog post is with the slides of my lighting talk for the useR! 2020 Conference, St. Louis, USA.

Here is the video recording:

How to simplify Machine Learning workflows specifications?

useR! 2020 Conference, lightning talk

Anton Antonov
Senior Research Scientist
Accendo Data LLC
https://github.com/antononcube

What is this about?

Rapid specification of Machine Learning (ML) workflows using natural language commands.

The easiest things to automate with ML are ML workflows.

This presentation demonstrates that with natural language interfaces to ML algorithms.

Motivation

Assume that:

  1. We want to create conversation agents that help Data Science (DS) and ML practitioners to quickly create first, initial versions of different DS and ML workflows for different programming languages and related packages.
  2. We expect that the initial versions of programming code are tweaked further. (In order to produce desired outcomes in the application area of interest.)

The workflows considered

In this presentation we focus on these three ML areas:

  • Quantile Regression (QR)
  • Latent Semantic Analysis (LSA)
  • Recommendations

First example data

Assume we have a data frame with temperature data. Here is a summary:

summary(dfTemperatureData)
## Time Temperature ## Min. :3.629e+09 Min. : 4.72 ## 1st Qu.:3.661e+09 1st Qu.:19.67 ## Median :3.692e+09 Median :23.33 ## Mean :3.692e+09 Mean :22.28 ## 3rd Qu.:3.724e+09 3rd Qu.:26.11 ## Max. :3.755e+09 Max. :31.17
ggplot2::ggplot(dfTemperatureData) + ggplot2::geom_point( ggplot2::aes( x = Time, y = Temperature ) )

Quantile Regression workflow: first example

Here is a Quantile Regression (QR) workflow specification:

qrmon2 <-  eval( expr = to_QRMon_R_command(  "create from dfTemperatureData;  compute quantile regression with 12 knots and probabilities 0.25, 0.5, and 0.75;  show date list plot with date origin 1900-01-01;", parse = TRUE) )

How it is done?

For a given ML domain (like QR or LSA) we create two types of Domain Specific Languages (DSL’s):

  1. a software monad (i.e. programming language pipeline package) and
  2. a DSL that is a subset of a spoken language.

These two DSL’s are combined: the latter translates natural language commands into the former.

By executing those translations we interpret commands of spoken DSL’s into ML computational results.

Note, that we assume that there is a separate system that converts speech into text.

Development cycle

Here is a clarification diagram:

MonadicMakingOfMLConversationalAgents
MonadicMakingOfMLConversationalAgents

Grammars and parsers

For each type of workflow is developed a specialized DSL translation Raku module.

Each Raku module:

  1. Has grammars for parsing a sequence of natural commands of a certain DSL
  2. Translates the parsing results into corresponding software monad code

Different programming languages and packages can be the targets of the DSL translation.

(At this point are implemented DSL-translators to Python, R, and Wolfram Language.)

Here is an example grammar.

Quantile Regression workflow: translation

Here is how a sequence of natural commands that specifies a QR workflow is translated into code for a QR software monad:

qrExpr <-  to_QRMon_R_command(  "create from dfTemperatureData;  compute quantile regression with knots 12 and probabilities 0.05, 0.95;  find outliers;", parse = FALSE ) qrExpr
## [1] "QRMonUnit( data = dfTemperatureData) %>%" ## [2] "QRMonQuantileRegression(df = 12, probabilities = c(0.05, 0.95)) %>%" ## [3] "QRMonOutliers() %>% QRMonOutliersPlot()"

Quantile Regression workflow: evaluation

Here we evaluate the generated QR monad code:

qrmon2 <- eval(expr = parse( text = paste(qrExpr)))
## Warning in QRMonSetData(res, data): The argument data is expected to be a data frame with columns: { Regressor, Value }.
## Warning in QRMonSetData(res, data): Proceeding by renaming the first columm "Time" as "Regressor" and renaming the second columm "Temperature" as "Value".

Latent Semantic Analysis workflow: translation

Here is how a sequence of natural commands that specifies a LSA workflow is translated into code for a LSA software monad:

lsaExpr <-  to_LSAMon_R_command(  "create from textHamlet;  make document term matrix with automatic stop words and without stemming;  apply lsi functions global weight function idf, local term weight function none, normalizer function cosine;  extract 12 topics using method SVD, max steps 120, and min number of documents per term 2;  show thesaurus table for ghost and grave;", parse = FALSE ) lsaExpr
## [1] "LSAMonUnit(textHamlet) %>%" ## [2] "LSAMonMakeDocumentTermMatrix( stopWords = NULL, stemWordsQ = FALSE) %>%" ## [3] "LSAMonApplyTermWeightFunctions(globalWeightFunction = \"IDF\", localWeightFunction = \"None\", normalizerFunction = \"Cosine\") %>%" ## [4] "LSAMonExtractTopics( numberOfTopics = 12, method = \"SVD\", maxSteps = 120, minNumberOfDocumentsPerTerm = 2) %>%" ## [5] "LSAMonEchoStatisticalThesaurus( words = c(\"ghost\", \"grave\"))"

Latent Semantic Analysis workflow: evaluation

Here we execute the generated LSA monad code:

lsamon2 <- eval(expr = parse( text = paste(lsaExpr)))
## Warning in NonNegativeMatrixFactorization::NearestWords(lsaObj$H, word, : More that one column name corresponds to the search word; the first match is used.
## SearchTerm Word.Distance Word.Index Word.Word ## 1 ghost 0.0000000000 623 ghost ## 2 ghost 2.7104582353 27 again ## 3 ghost 3.0323549513 513 father ## 4 ghost 3.1750339154 1465 stage ## 5 ghost 3.2285642571 1644 under ## 6 ghost 3.2393248725 319 cries ## 7 ghost 3.3826537734 1312 s ## 8 ghost 3.4975768169 1512 swear ## 9 ghost 3.5204077364 935 mar ## 10 ghost 3.5868377279 1550 thee ## 11 ghost 3.5869119178 744 hor ## 12 ghost 3.5901934408 1587 thy ## 13 grave 0.0000000000 648 grave ## 14 grave 0.0002598782 1597 tongue ## 15 grave 0.0002828355 151 better ## 16 grave 0.0002891626 1317 said ## 17 grave 0.0003122740 741 honour ## 18 grave 0.0003327156 1419 sleep ## 19 grave 0.0003395627 897 long ## 20 grave 0.0003459771 60 any ## 21 grave 0.0004090686 1251 reason ## 22 grave 0.0004264220 58 answer ## 23 grave 0.0004381933 643 grace ## 24 grave 0.0004560758 429 each

Recommender workflow: data

Consider the making of a recommender over the Titanic data:

dfTitanic[sample(1:nrow(dfTitanic), 12), ]
## id passengerClass passengerAge passengerSex passengerSurvival ## 1225 id.1225 3rd 20 male died ## 443 id.443 2nd 20 male died ## 761 id.761 3rd 30 male survived ## 835 id.835 3rd 30 male died ## 706 id.706 3rd -1 male died ## 339 id.339 2nd 30 male died ## 515 id.515 2nd 0 male survived ## 10 id.10 1st 70 male died ## 579 id.579 2nd 30 male died ## 1248 id.1248 3rd -1 female survived ## 673 id.673 3rd -1 male died ## 1205 id.1205 3rd 20 male died
summary(as.data.frame(unclass(dfTitanic), stringsAsFactors = TRUE))
## id passengerClass passengerAge passengerSex passengerSurvival ## id.1 : 1 1st:323 Min. :-1.00 female:466 died :809 ## id.10 : 1 2nd:277 1st Qu.:10.00 male :843 survived:500 ## id.100 : 1 3rd:709 Median :20.00 ## id.1000: 1 Mean :23.55 ## id.1001: 1 3rd Qu.:40.00 ## id.1002: 1 Max. :80.00 ## (Other):1303

Recommender workflow

Here are recommender workflow specification and evaluation results:

smrmon2 <-  eval( expr = to_SMRMon_R_command(  "create from dfTitanic;   apply the LSI functions inverse document frequency, term frequency, and cosine;  compute the top 6 recommendations for the profile female=1, 30=1;   extend recommendations with dfTitanic;  show pipeline value", parse = TRUE ) )
## Score Index id passengerClass passengerAge passengerSex passengerSurvival ## 1 2 1 id.1 1st 30 female survived ## 2 2 33 id.1027 3rd 30 female survived ## 3 2 68 id.1059 3rd 30 female died ## 4 2 72 id.1062 3rd 30 female survived ## 5 2 99 id.1087 3rd 30 female died ## 6 2 108 id.1095 3rd 30 female survived

Handling misspellings

The approach taken in the design and implementation of the natural language commands interpreters can handle misspellings:

smrmon2 <-  eval( expr = to_SMRMon_R_command(  "create from dfTitanic;   aply the LSI functions inverse document frequency, term frequency, and cosine;  compute the top 6 recomendations for the profle female=1, 30=1;   extend recommendations with dfTitanic;  show pipeline value" ) )
## [1] "Possible misspelling of 'apply' as 'aply'." ## [2] "Possible misspelling of 'recommendations' as 'recomendations'." ## [3] "Possible misspelling of 'profile' as 'profle'." ## Score Index id passengerClass passengerAge passengerSex passengerSurvival ## 1 2 1 id.1 1st 30 female survived ## 2 2 33 id.1027 3rd 30 female survived ## 3 2 68 id.1059 3rd 30 female died ## 4 2 72 id.1062 3rd 30 female survived ## 5 2 99 id.1087 3rd 30 female died ## 6 2 108 id.1095 3rd 30 female survived

Not just ML workflows

Obviously this approach can be used for any type of computational workflows.

Here is an example of an Epidemiology Modeling workflow:

ecmCommands <- 'create with the model susceptible exposed infected two hospitalized recovered;  assign 100000 to the susceptible population;  set infected normally symptomatic population to be 0;  set infected severely symptomatic population to be 1;  assign 0.56 to contact rate of infected normally symptomatic population;  assign 0.58 to contact rate of infected severely symptomatic population;  assign 0.1 to contact rate of the hospitalized population;  simulate for 240 days;  plot populations results;'
to_ECMMon_R_command(ecmCommands, parse = TRUE)
## expression( ## ECMMonUnit(model = SEI2HRModel()) %>% ## ECMMonAssignInitialConditions(initConds = c(SPt = 1e+05)) %>% ## ECMMonAssignInitialConditions(initConds = c(INSPt = 0)) %>% ## ECMMonAssignInitialConditions(initConds = c(ISSPt = 1)) %>% ## ECMMonAssignRateValues(rateValues = c(contactRateINSP = 0.56)) %>% ## ECMMonAssignRateValues(rateValues = c(contactRateISSP = 0.58)) %>% ## ECMMonAssignRateValues(rateValues = c(contactRateHP = 0.1)) %>% ## ECMMonSimulate(maxTime = 240) %>% ECMMonPlotSolutions(stocksSpec = ".*Population") ## )
ecmmon2 <- eval( to_ECMMon_R_command(ecmCommands) )

References

Repositories

[AAr1] Anton Antonov, R-packages, (2019), GitHub.

[AAr2] Anton Antonov, Conversational Agents, (2017), GitHub.

Packages

[AAp1] Anton Antonov, Quantle Regression Monad in R, (2019), GitHub.

[AAp2] Anton Antonov, Latent Semantic Analysis Monad in R, (2019), R-packages at GitHub.

[AAp3] Anton Antonov, Sparse Matrix Recommender Monad in R, (2019), R-packages at GitHub.

[AAp4] Anton Antonov, Epidemiology Compartmental Modeling Monad in R, (2020), GitHub.

A monad for Quantile Regression workflows

Introduction

In this document we describe the design and implementation of a (software programming) monad for Quantile Regression workflows specification and execution. The design and implementation are done with Mathematica / Wolfram Language (WL).

What is Quantile Regression? : Assume we have a set of two dimensional points each point being a pair of an independent variable value and a dependent variable value. We want to find a curve that is a function of the independent variable that splits the points in such a way that, say, 30% of the points are above that curve. This is done with Quantile Regression, see [Wk2, CN1, AA2, AA3]. Quantile Regression is a method to estimate the variable relations for all parts of the distribution. (Not just, say, the mean of the relationships found with Least Squares Regression.)

The goal of the monad design is to make the specification of Quantile Regression workflows (relatively) easy, straightforward, by following a certain main scenario and specifying variations over that scenario. Since Quantile Regression is often compared with Least Squares Regression and some type of filtering (like, Moving Average) those functionalities should be included in the monad design scenarios.

The monad is named QRMon and it is based on the State monad package "StateMonadCodeGenerator.m", [AAp1, AA1] and the Quantile Regression package "QuantileRegression.m", [AAp4, AA2].

The data for this document is read from WL’s repository or created ad-hoc.

The monadic programming design is used as a Software Design Pattern. The QRMon monad can be also seen as a Domain Specific Language (DSL) for the specification and programming of machine learning classification workflows.

Here is an example of using the QRMon monad over heteroscedastic data::

QRMon-introduction-monad-pipeline-example-table

QRMon-introduction-monad-pipeline-example-table

QRMon-introduction-monad-pipeline-example-echo

QRMon-introduction-monad-pipeline-example-echo

The table above is produced with the package "MonadicTracing.m", [AAp2, AA1], and some of the explanations below also utilize that package.

As it was mentioned above the monad QRMon can be seen as a DSL. Because of this the monad pipelines made with QRMon are sometimes called "specifications".

Remark: With "regression quantile" we mean "a curve or function that is computed with Quantile Regression".

Contents description

The document has the following structure.

  • The sections "Package load" and "Data load" obtain the needed code and data.
  • The sections "Design consideration" and "Monad design" provide motivation and design decisions rationale.

  • The sections "QRMon overview" and "Monad elements" provide technical description of the QRMon monad needed to utilize it.

    • (Using a fair amount of examples.)
  • The section "Unit tests" describes the tests used in the development of the QRMon monad.
    • (The random pipelines unit tests are especially interesting.)
  • The section "Future plans" outlines future directions of development.
  • The section "Implementation notes" just says that QRMon’s development process and this document follow the ones of the classifications workflows monad ClCon, [AA6].

Remark: One can read only the sections "Introduction", "Design consideration", "Monad design", and "QRMon overview". That set of sections provide a fairly good, programming language agnostic exposition of the substance and novel ideas of this document.

The table above is produced with the package "MonadicTracing.m", [AAp2, AA1], and some of the explanations below also utilize that package.

As it was mentioned above the monad QRMon can be seen as a DSL. Because of this the monad pipelines made with QRMon are sometimes called "specifications".

Remark: With "regression quantile" we mean "a curve or function that is computed with Quantile Regression".

Package load

The following commands load the packages [AAp1–AAp6]:

Import["https://raw.githubusercontent.com/antononcube/\ MathematicaForPrediction/master/MonadicProgramming/\ MonadicQuantileRegression.m"] Import["https://raw.githubusercontent.com/antononcube/\ MathematicaForPrediction/master/MonadicProgramming/MonadicTracing.m"]

Data load

In this section we load data that is used in the rest of the document. The time series data is obtained through WL’s repository.

The data summarization and plots are done through QRMon, which in turn uses the function RecordsSummary from the package "MathematicaForPredictionUtilities.m", [AAp6].

Distribution data

The following data is generated to have [heteroscedasticity(https://en.wikipedia.org/wiki/Heteroscedasticity).

distData = Table[{x, Exp[-x^2] + RandomVariate[ NormalDistribution[0, .15 Sqrt[Abs[1.5 - x]/1.5]]]}, {x, -3, 3, .01}]; Length[distData] (* 601 *) QRMonUnit[distData]⟹QRMonEchoDataSummary⟹QRMonPlot;
QRMon-distData

QRMon-distData

Temperature time series

tsData = WeatherData[{"Orlando", "USA"}, "Temperature", {{2015, 1, 1}, {2018, 1, 1}, "Day"}] QRMonUnit[tsData]⟹QRMonEchoDataSummary⟹QRMonDateListPlot;
QRMon-tsData

QRMon-tsData

Financial time series

The following data is typical for financial time series. (Note the differences with the temperature time series.)

finData = TimeSeries[FinancialData["NYSE:GE", {{2014, 1, 1}, {2018, 1, 1}, "Day"}]]; QRMonUnit[finData]⟹QRMonEchoDataSummary⟹QRMonDateListPlot;
QRMon-finData

QRMon-finData

Design considerations

The steps of the main regression workflow addressed in this document follow.

  1. Retrieving data from a data repository.

  2. Optionally, transform the data.

    1. Delete rows with missing fields.

    2. Rescale data along one or both of the axes.

    3. Apply moving average (or median, or map.)

  3. Verify assumptions of the data.

  4. Run a regression algorithm with a certain basis of functions using:

    1. Quantile Regression, or

    2. Least Squares Regression.

  5. Visualize the data and regression functions.

  6. If the regression functions fit is not satisfactory go to step 4.

  7. Utilize the found regression functions to compute:

    1. outliers,

    2. local extrema,

    3. approximation or fitting errors,

    4. conditional density distributions,

    5. time series simulations.

The following flow-chart corresponds to the list of steps above.

Quantile-regression-workflow-extended

Quantile-regression-workflow-extended

In order to address:

  • the introduction of new elements in regression workflows,

  • workflows elements variability, and

  • workflows iterative changes and refining,

it is beneficial to have a DSL for regression workflows. We choose to make such a DSL through a functional programming monad, [Wk1, AA1].

Here is a quote from [Wk1] that fairly well describes why we choose to make a classification workflow monad and hints on the desired properties of such a monad.

[…] The monad represents computations with a sequential structure: a monad defines what it means to chain operations together. This enables the programmer to build pipelines that process data in a series of steps (i.e. a series of actions applied to the data), in which each action is decorated with the additional processing rules provided by the monad. […] Monads allow a programming style where programs are written by putting together highly composable parts, combining in flexible ways the possible actions that can work on a particular type of data. […]

Remark: Note that quote from [Wk1] refers to chained monadic operations as "pipelines". We use the terms "monad pipeline" and "pipeline" below.

Monad design

The monad we consider is designed to speed-up the programming of quantile regression workflows outlined in the previous section. The monad is named QRMon for "Quantile Regression Monad".

We want to be able to construct monad pipelines of the general form:

QRMon-formula-1

QRMon-formula-1

QRMon is based on the State monad, [Wk1, AA1], so the monad pipeline form (1) has the following more specific form:

QRMon-formula-2

QRMon-formula-2

This means that some monad operations will not just change the pipeline value but they will also change the pipeline context.

In the monad pipelines of QRMon we store different objects in the contexts for at least one of the following two reasons.

  1. The object will be needed later on in the pipeline, or

  2. The object is (relatively) hard to compute.

Such objects are transformed data, regression functions, and outliers.

Let us list the desired properties of the monad.

  • Rapid specification of non-trivial quantile regression workflows.

  • The monad works with time series, numerical matrices, and numerical vectors.

  • The pipeline values can be of different types. Most monad functions modify the pipeline value; some modify the context; some just echo results.

  • The monad can do quantile regression with B-Splines bases, quantile regression fit and least squares fit with specified bases of functions.

  • The monad allows of cursory examination and summarization of the data.

  • It is easy to obtain the pipeline value, context, and different context objects for manipulation outside of the monad.

  • It is easy to plot different combinations of data, regression functions, outliers, approximation errors, etc.

The QRMon components and their interactions are fairly simple.

The main QRMon operations implicitly put in the context or utilize from the context the following objects:

  • (time series) data,

  • regression functions,

  • outliers and outlier regression functions.

Note the that the monadic set of types of QRMon pipeline values is fairly heterogenous and certain awareness of "the current pipeline value" is assumed when composing QRMon pipelines.

Obviously, we can put in the context any object through the generic operations of the State monad of the package "StateMonadGenerator.m", [AAp1].

QRMon overview

When using a monad we lift certain data into the "monad space", using monad’s operations we navigate computations in that space, and at some point we take results from it.

With the approach taken in this document the "lifting" into the QRMon monad is done with the function QRMonUnit. Results from the monad can be obtained with the functions QRMonTakeValue, QRMonContext, or with the other QRMon functions with the prefix "QRMonTake" (see below.)

Here is a corresponding diagram of a generic computation with the QRMon monad:

QRMon-pipeline

QRMon-pipeline

Remark: It is a good idea to compare the diagram with formulas (1) and (2).

Let us examine a concrete QRMon pipeline that corresponds to the diagram above. In the following table each pipeline operation is combined together with a short explanation and the context keys after its execution.

Here is the output of the pipeline:

The QRMon functions are separated into four groups:

  • operations,

  • setters and droppers,

  • takers,

  • State Monad generic functions.

An overview of the those functions is given in the tables in next two sub-sections. The next section, "Monad elements", gives details and examples for the usage of the QRMon operations.

Monad functions interaction with the pipeline value and context

The following table gives an overview the interaction of the QRMon monad functions with the pipeline value and context.

QRMon-monad-functions-overview-table

QRMon-monad-functions-overview-table

The following table shows the functions that are function synonyms or short-cuts.

QRMon-monad-functions-shortcuts-table

QRMon-monad-functions-shortcuts-table

State monad functions

Here are the QRMon State Monad functions (generated using the prefix "QRMon", [AAp1, AA1]):

QRMon-StMon-functions-overview-table

QRMon-StMon-functions-overview-table

Monad elements

In this section we show that QRMon has all of the properties listed in the previous section.

The monad head

The monad head is QRMon. Anything wrapped in QRMon can serve as monad’s pipeline value. It is better though to use the constructor QRMonUnit. (Which adheres to the definition in [Wk1].)

QRMon[{{1, 223}, {2, 323}}, <||>]⟹QRMonEchoDataSummary;
The-monad-head-output

The-monad-head-output

Lifting data to the monad

The function lifting the data into the monad QRMon is QRMonUnit.

The lifting to the monad marks the beginning of the monadic pipeline. It can be done with data or without data. Examples follow.

QRMonUnit[distData]⟹QRMonEchoDataSummary;
Lifting-data-to-the-monad-output

Lifting-data-to-the-monad-output

QRMonUnit[]⟹QRMonSetData[distData]⟹QRMonEchoDataSummary;
Lifting-data-to-the-monad-output

Lifting-data-to-the-monad-output

(See the sub-section "Setters, droppers, and takers" for more details of setting and taking values in QRMon contexts.)

Currently the monad can deal with data in the following forms:

  • time series,

  • numerical vectors,

  • numerical matrices of rank two.

When the data lifted to the monad is a numerical vector vec it is assumed that vec has to become the second column of a "time series" matrix; the first column is derived with Range[Length[vec]] .

Generally, WL makes it easy to extract columns datasets order to obtain numerical matrices, so datasets are not currently supported in QRMon.

Quantile regression with B-splines

This computes quantile regression with B-spline basis over 12 regularly spaced knots. (Using Linear Programming algorithms; see [AA2] for details.)

QRMonUnit[distData]⟹ QRMonQuantileRegression[12]⟹ QRMonPlot;
Quantile-regression-with-B-splines-output-1

Quantile-regression-with-B-splines-output-1

The monad function QRMonQuantileRegression has the same options as QuantileRegression. (The default value for option Method is different, since using "CLP" is generally faster.)

Options[QRMonQuantileRegression] (* {InterpolationOrder -> 3, Method -> {LinearProgramming, Method -> "CLP"}} *)

Let us compute regression using a list of particular knots, specified quantiles, and the method "InteriorPoint" (instead of the Linear Programming library CLP):

p = QRMonUnit[distData]⟹ QRMonQuantileRegression[{-3, -2, 1, 0, 1, 1.5, 2.5, 3}, Range[0.1, 0.9, 0.2], Method -> {LinearProgramming, Method -> "InteriorPoint"}]⟹ QRMonPlot;
Quantile-regression-with-B-splines-output-2

Quantile-regression-with-B-splines-output-2

Remark: As it was mentioned above the function QRMonRegression is a synonym of QRMonQuantileRegression.

The fit functions can be extracted from the monad with QRMonTakeRegressionFunctions, which gives an association of quantiles and pure functions.

ListPlot[# /@ distData[[All, 1]]] & /@ (p⟹QRMonTakeRegressionFunctions)
Quantile-regression-with-B-splines-output-3

Quantile-regression-with-B-splines-output-3

Quantile regression fit and Least squares fit

Instead of using a B-spline basis of functions we can compute a fit with our own basis of functions.

Here is a basis functions:

bFuncs = Table[PDF[NormalDistribution[m, 1], x], {m, Min[distData[[All, 1]]], Max[distData[[All, 1]]], 1}]; Plot[bFuncs, {x, Min[distData[[All, 1]]], Max[distData[[All, 1]]]}, PlotRange -> All, PlotTheme -> "Scientific"]
Quantile-regression-fit-and-Least-squares-fit-basis

Quantile-regression-fit-and-Least-squares-fit-basis

Here we do a Quantile Regression fit, a Least Squares fit, and plot the results:

p = QRMonUnit[distData]⟹ QRMonQuantileRegressionFit[bFuncs]⟹ QRMonLeastSquaresFit[bFuncs]⟹ QRMonPlot; 
Quantile-regression-fit-and-Least-squares-fit-output-1

Quantile-regression-fit-and-Least-squares-fit-output-1

Remark: The functions "QRMon*Fit" should generally have a second argument for the symbol of the basis functions independent variable. Often that symbol can be omitted and implied. (Which can be seen in the pipeline above.)

Remark: As it was mentioned above the function QRMonRegressionFit is a synonym of QRMonQuantileRegressionFit and QRMonFit is a synonym of QRMonLeastSquaresFit.

As it was pointed out in the previous sub-section, the fit functions can be extracted from the monad with QRMonTakeRegressionFunctions. Here the keys of the returned/taken association consist of quantiles and "mean" since we applied both Quantile Regression and Least Squares Regression.

ListPlot[# /@ distData[[All, 1]]] & /@ (p⟹QRMonTakeRegressionFunctions)
Quantile-regression-fit-and-Least-squares-fit-output-2

Quantile-regression-fit-and-Least-squares-fit-output-2

Default basis to fit (using Chebyshev polynomials)

One of the main advantages of using the function QuanileRegression of the package [AAp4] is that the functions used to do the regression with are specified with a few numeric parameters. (Most often only the number of knots is sufficient.) This is achieved by using a basis of B-spline functions of a certain interpolation order.

We want similar behaviour for Quantile Regression fitting we need to select a certain well known basis with certain desirable properties. Such basis is given by Chebyshev polynomials of first kind [Wk3]. Chebyshev polynomials bases can be easily generated in Mathematica with the functions ChebyshevT or ChebyshevU.

Here is an application of fitting with a basis of 12 Chebyshev polynomials of first kind:

QRMonUnit[distData]⟹ QRMonQuantileRegressionFit[12]⟹ QRMonLeastSquaresFit[12]⟹ QRMonPlot;
Default-basis-to-fit-output-1-and-2

Default-basis-to-fit-output-1-and-2

The code above is equivalent to the following code:

bfuncs = Table[ChebyshevT[i, Rescale[x, MinMax[distData[[All, 1]]], {-0.95, 0.95}]], {i, 0, 12}]; p = QRMonUnit[distData]⟹ QRMonQuantileRegressionFit[bfuncs]⟹ QRMonLeastSquaresFit[bfuncs]⟹ QRMonPlot;
Default-basis-to-fit-output-1-and-2

Default-basis-to-fit-output-1-and-2

The shrinking of the ChebyshevT domain seen in the definitions of bfuncs is done in order to prevent approximation error effects at the ends of the data domain. The following code uses the ChebyshevT domain { − 1, 1} instead of the domain { − 0.95, 0.95} used above.

QRMonUnit[distData]⟹ QRMonQuantileRegressionFit[{4, {-1, 1}}]⟹ QRMonPlot;
Default-basis-to-fit-output-3

Default-basis-to-fit-output-3

Regression functions evaluation

The computed quantile and least squares regression functions can be evaluated with the monad function QRMonEvaluate.

Evaluation for a given value of the independent variable:

p⟹QRMonEvaluate[0.12]⟹QRMonTakeValue (* <|0.25 -> 0.930402, 0.5 -> 1.01411, 0.75 -> 1.08075, "mean" -> 0.996963|> *)

Evaluation for a vector of values:

p⟹QRMonEvaluate[Range[-1, 1, 0.5]]⟹QRMonTakeValue (* <|0.25 -> {0.258241, 0.677461, 0.943299, 0.703812, 0.293741}, 0.5 -> {0.350025, 0.768617, 1.02311, 0.807879, 0.374545}, 0.75 -> {0.499338, 0.912183, 1.10325, 0.856729, 0.431227}, "mean" -> {0.355353, 0.776006, 1.01118, 0.783304, 0.363172}|> *)

Evaluation for complicated lists of numbers:

p⟹QRMonEvaluate[{0, 1, {1.5, 1.4}}]⟹QRMonTakeValue (* <|0.25 -> {0.943299, 0.293741, {0.0762883, 0.10759}}, 0.5 -> {1.02311, 0.374545, {0.103386, 0.139142}}, 0.75 -> {1.10325, 0.431227, {0.133755, 0.177161}}, "mean" -> {1.01118, 0.363172, {0.107989, 0.142021}}|> *) 

The obtained values can be used to compute estimates of the distributions of the dependent variable. See the sub-sections "Estimating conditional distributions" and "Dependent variable simulation".

Errors and error plots

Here with "errors" we mean the differences between data’s dependent variable values and the corresponding values calculated with the fitted regression curves.

In the pipeline below we compute couple of regression quantiles, plot them together with the data, we plot the errors, compute the errors, and summarize them.

QRMonUnit[finData]⟹ QRMonQuantileRegression[10, {0.5, 0.1}]⟹ QRMonDateListPlot[Joined -> False]⟹ QRMonErrorPlots["DateListPlot" -> True, Joined -> False]⟹ QRMonErrors⟹ QRMonEchoFunctionValue["Errors summary:", RecordsSummary[#[[All, 2]]] & /@ # &];
Errors-and-error-plots-output-1

Errors-and-error-plots-output-1

Each of the functions QRMonErrors and QRMonErrorPlots computes the errors. (That computation is considered cheap.)

Finding outliers

Finding outliers can be done with the function QRMonOultiers. The outliers found by QRMonOutliers are simply points that below or above certain regression quantile curves, for example, the ones corresponding to 0.02 and 0.98.

Here is an example:

p = QRMonUnit[distData]⟹ QRMonQuantileRegression[6, {0.02, 0.98}]⟹ QRMonOutliers⟹ QRMonEchoValue⟹ QRMonOutliersPlot;
Finding-outliers-output-1

Finding-outliers-output-1

The function QRMonOutliers puts in the context values for the keys "outliers" and "outlierRegressionFunctions". The former is for the found outliers, the latter is for the functions corresponding to the used regression quantiles.

Keys[p⟹QRMonTakeContext] (* {"data", "regressionFunctions", "outliers", "outlierRegressionFunctions"} *)

Here are the corresponding quantiles of the plot above:

Keys[p⟹QRMonTakeOutlierRegressionFunctions] (* {0.02, 0.98} *)

The control of the outliers computation is done though the arguments and options of QRMonQuantileRegression (or the rest of the regression calculation functions.)

If only one regression quantile is found in the context and the corresponding quantile is less than 0.5 then QRMonOutliers finds only bottom outliers. If only one regression quantile is found in the context and the corresponding quantile is greater than 0.5 then QRMonOutliers finds only top outliers.

Here is an example for finding only the top outliers:

QRMonUnit[finData]⟹ QRMonQuantileRegression[5, 0.8]⟹ QRMonOutliers⟹ QRMonEchoFunctionContext["outlier quantiles:", Keys[#outlierRegressionFunctions] &]⟹ QRMonOutliersPlot["DateListPlot" -> True]; 
Finding-outliers-output-2

Finding-outliers-output-2

Plotting outliers

The function QRMonOutliersPlot makes an outliers plot. If the outliers are not in the context then QRMonOutliersPlot calls QRMonOutliers first.

Here are the options of QRMonOutliersPlot:

Options[QRMonOutliersPlot] (* {"Echo" -> True, "DateListPlot" -> False, ListPlot -> {Joined -> False}, Plot -> {}} *)

The default behavior is to echo the plot. That can be suppressed with the option "Echo".

QRMonOutliersPlot utilizes combines with Show two plots:

  • one with ListPlot (or DateListPlot) for the data and the outliers,

  • the other with Plot for the regression quantiles used to find the outliers.

That is why separate lists of options can be given to manipulate those two plots. The option DateListPlot can be used make plots with date or time axes.

QRMonUnit[tsData]⟹ QRMonQuantileRegression[12, {0.01, 0.99}]⟹ QRMonOutliersPlot[ "Echo" -> False, "DateListPlot" -> True, ListPlot -> {PlotStyle -> {Green, {PointSize[0.02], Red}, {PointSize[0.02], Blue}}, Joined -> False, PlotTheme -> "Grid"}, Plot -> {PlotStyle -> Orange}]⟹ QRMonTakeValue 
Plotting-outliers-output-2

Plotting-outliers-output-2

Estimating conditional distributions

Consider the following problem:

How to estimate the conditional density of the dependent variable given a value of the conditioning independent variable?

(In other words, find the distribution of the y-values for a given, fixed x-value.)

The solution of this problem using Quantile Regression is discussed in detail in [PG1] and [AA4].

Finding a solution for this problem can be seen as a primary motivation to develop Quantile Regression algorithms.

The following pipeline (i) computes and plots a set of five regression quantiles and (ii) then using the found regression quantiles computes and plots the conditional distributions for two focus points (−2 and 1.)

QRMonUnit[distData]⟹ QRMonQuantileRegression[6, Range[0.1, 0.9, 0.2]]⟹ QRMonPlot[GridLines -> {{-2, 1}, None}]⟹ QRMonConditionalCDF[{-2, 1}]⟹ QRMonConditionalCDFPlot;
Estimating-conditional-distributions-output-1

Estimating-conditional-distributions-output-1

Moving average, moving median, and moving map

Fairly often it is a good idea for a given time series to apply filter functions like Moving Average or Moving Median. We might want to:

  • visualize the obtained transformed data,

  • do regression over the transformed data,

  • compare with regression curves over the original data.

For these reasons QRMon has the functions QRMonMovingAverage, QRMonMovingMedian, and QRMonMovingMap that correspond to the built-in functions MovingAverage, MovingMedian, and MovingMap.

Here is an example:

QRMonUnit[tsData]⟹ QRMonDateListPlot[ImageSize -> Small]⟹ QRMonMovingAverage[20]⟹ QRMonEchoFunctionValue["Moving avg: ", DateListPlot[#, ImageSize -> Small] &]⟹ QRMonMovingMap[Mean, Quantity[20, "Days"]]⟹ QRMonEchoFunctionValue["Moving map: ", DateListPlot[#, ImageSize -> Small] &];
Moving-average-moving-median-and-moving-map-output-1

Moving-average-moving-median-and-moving-map-output-1

Dependent variable simulation

Consider the problem of making a time series that is a simulation of a process given with a known time series.

More formally,

  • we are given a time-axis grid (regular or irregular),

  • we consider each grid node to correspond to a random variable,

  • we want to generate time series based on the empirical CDF’s of the random variables that correspond to the grid nodes.

The formulation of the problem hints to an (almost) straightforward implementation using Quantile Regression.

p = QRMonUnit[tsData]⟹QRMonQuantileRegression[30, Join[{0.01}, Range[0.1, 0.9, 0.1], {0.99}]]; tsNew = p⟹ QRMonSimulate[1000]⟹ QRMonTakeValue; opts = {ImageSize -> Medium, PlotTheme -> "Detailed"}; GraphicsGrid[{{DateListPlot[tsData, PlotLabel -> "Actual", opts], DateListPlot[tsNew, PlotLabel -> "Simulated", opts]}}]
Dependent-variable-simulation-output-1

Dependent-variable-simulation-output-1

Finding local extrema in noisy data

Using regression fitting — and Quantile Regression in particular — we can easily construct semi-symbolic algorithms for finding local extrema in noisy time series data; see [AA5]. The QRMon function with such an algorithm is QRMonLocalExtrema.

In brief, the algorithm steps are as follows. (For more details see [AA5].)

  1. Fit a polynomial through the data.

  2. Find the local extrema of the fitted polynomial. (We will call them fit estimated extrema.)

  3. Around each of the fit estimated extrema find the most extreme point in the data by a nearest neighbors search (by using Nearest).

The function QRMonLocalExtrema uses the regression quantiles previously found in the monad pipeline (and stored in the context.) The bottom regression quantile is used for finding local minima, the top regression quantile is used for finding the local maxima.

An example of finding local extrema follows.

QRMonUnit[TimeSeriesWindow[tsData, {{2015, 1, 1}, {2018, 12, 31}}]]⟹ QRMonQuantileRegression[10, {0.05, 0.95}]⟹ QRMonDateListPlot[Joined -> False, PlotTheme -> "Scientific"]⟹ QRMonLocalExtrema["NumberOfProximityPoints" -> 100]⟹ QRMonEchoValue⟹ QRMonAddToContext⟹ QRMonEchoFunctionContext[ DateListPlot[{#localMinima, #localMaxima, #data}, PlotStyle -> {PointSize[0.015], PointSize[0.015], Gray}, Joined -> False, PlotLegends -> {"localMinima", "localMaxima", "data"}, PlotTheme -> "Scientific"] &];
Finding-local-extrema-in-noisy-data-output-1

Finding-local-extrema-in-noisy-data-output-1

Note that in the pipeline above in order to plot the data and local extrema together some additional steps are needed. The result of QRMonLocalExtrema becomes the pipeline value; that pipeline value is displayed with QRMonEchoValue, and stored in the context with QRMonAddToContext. If the pipeline value is an association — which is the case here — the monad function QRMonAddToContext joins that association with the context association. In this case this means that we will have key-value elements in the context for "localMinima" and "localMaxima". The date list plot at the end of the pipeline uses values of those context keys (together with the value for "data".)

Setters, droppers, and takers

The values from the monad context can be set, obtained, or dropped with the corresponding "setter", "dropper", and "taker" functions as summarized in a previous section.

For example:

p = QRMonUnit[distData]⟹QRMonQuantileRegressionFit[2]; p⟹QRMonTakeRegressionFunctions (* <|0.25 -> (0.0191185 + 0.00669159 #1 + 3.05509*10^-14 #1^2 &), 0.5 -> (0.191408 + 9.4728*10^-14 #1 + 3.02272*10^-14 #1^2 &), 0.75 -> (0.563422 + 3.8079*10^-11 #1 + 7.63637*10^-14 #1^2 &)|> *) 

If other values are put in the context they can be obtained through the (generic) function QRMonTakeContext, [AAp1]:

p = QRMonUnit[RandomReal[1, {2, 2}]]⟹QRMonAddToContext["data"]; (p⟹QRMonTakeContext)["data"] (* {{0.608789, 0.741599}, {0.877074, 0.861554}} *)

Another generic function from [AAp1] is QRMonTakeValue (used many times above.)

Here is an example of the "data dropper" QRMonDropData:

p⟹QRMonDropData⟹QRMonTakeContext (* <||> *)

(The "droppers" simply use the state monad function QRMonDropFromContext, [AAp1]. For example, QRMonDropData is equivalent to QRMonDropFromContext["data"].)

Unit tests

The development of QRMon was done with two types of unit tests: (i) directly specified tests, [AAp7], and (ii) tests based on randomly generated pipelines, [AA8].

The unit test package should be further extended in order to provide better coverage of the functionalities and illustrate — and postulate — pipeline behavior.

Directly specified tests

Here we run the unit tests file "MonadicQuantileRegression-Unit-Tests.wlt", [AAp7]:

AbsoluteTiming[ testObject = TestReport["~/MathematicaForPrediction/UnitTests/MonadicQuantileRegression-Unit-Tests.wlt"] ]
Unit-tests-output-1

Unit-tests-output-1

The natural language derived test ID’s should give a fairly good idea of the functionalities covered in [AAp3].

Values[Map[#["TestID"] &, testObject["TestResults"]]] (* {"LoadPackage", "GenerateData", "QuantileRegression-1", \ "QuantileRegression-2", "QuantileRegression-3", \ "QuantileRegression-and-Fit-1", "Fit-and-QuantileRegression-1", \ "QuantileRegressionFit-and-Fit-1", "Fit-and-QuantileRegressionFit-1", \ "Outliers-1", "Outliers-2", "GridSequence-1", "BandsSequence-1", \ "ConditionalCDF-1", "Evaluate-1", "Evaluate-2", "Evaluate-3", \ "Simulate-1", "Simulate-2", "Simulate-3"} *)

Random pipelines tests

Since the monad QRMon is a DSL it is natural to test it with a large number of randomly generated "sentences" of that DSL. For the QRMon DSL the sentences are QRMon pipelines. The package "MonadicQuantileRegressionRandomPipelinesUnitTests.m", [AAp8], has functions for generation of QRMon random pipelines and running them as verification tests. A short example follows.

Generate pipelines:

SeedRandom[234] pipelines = MakeQRMonRandomPipelines[100]; Length[pipelines] (* 100 *)

Here is a sample of the generated pipelines:

(* Block[{DoubleLongRightArrow, pipelines = RandomSample[pipelines, 6]}, Clear[DoubleLongRightArrow]; pipelines = pipelines /. {_TemporalData -> "tsData", _?MatrixQ -> "distData"}; GridTableForm[Map[List@ToString[DoubleLongRightArrow @@ #, FormatType -> StandardForm] &, pipelines], TableHeadings -> {"pipeline"}] ] AutoCollapse[] *)
Unit-tests-random-pipelines-sample

Unit-tests-random-pipelines-sample

Here we run the pipelines as unit tests:

AbsoluteTiming[ res = TestRunQRMonPipelines[pipelines, "Echo" -> False]; ]

From the test report results we see that a dozen tests failed with messages, all of the rest passed.

rpTRObj = TestReport[res]

(The message failures, of course, have to be examined — some bugs were found in that way. Currently the actual test messages are expected.)

Future plans

Workflow operations

A list of possible, additional workflow operations and improvements follows.

  • Certain improvements can be done over the specification of the different plot options.

  • It will be useful to develop a function for automatic finding of over-fitting parameters.

  • The time series simulation should be done by aggregation of similar time intervals.

    • For example, for time series with span several years, for each month name is made Quantile Regression simulation and the results are spliced to obtain a one year simulation.
  • If the time series is represented as a sequence of categorical values, then the time series simulation can use Bayesian probabilities derived from sub-sequences.
    • QRMon already has functions that facilitate that, QRMonGridSequence and QRMonBandsSequence.

Conversational agent

Using the packages [AAp10, AAp11] we can generate QRMon pipelines with natural commands. The plan is to develop and document those functionalities further.

Here is an example of a pipeline constructed with natural language commands:

QRMonUnit[distData]⟹ ToQRMonPipelineFunction["show data summary"]⟹ ToQRMonPipelineFunction["calculate quantile regression for quantiles 0.2, 0.8 and with 40 knots"]⟹ ToQRMonPipelineFunction["plot"];
Future-plans-conversational-agent-output-1

Future-plans-conversational-agent-output-1

Implementation notes

The implementation methodology of the QRMon monad packages [AAp3, AAp8] followed the methodology created for the ClCon monad package [AAp9, AA6]. Similarly, this document closely follows the structure and exposition of the ClCon monad document "A monad for classification workflows", [AA6].

A lot of the functionalities and signatures of QRMon were designed and programed through considerations of natural language commands specifications given to a specialized conversational agent. (As discussed in the previous section.)

References

Packages

[AAp1] Anton Antonov, State monad code generator Mathematica package, (2017), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/StateMonadCodeGenerator.m .

[AAp2] Anton Antonov, Monadic tracing Mathematica package, (2017), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicTracing.m .

[AAp3] Anton Antonov, Monadic Quantile Regression Mathematica package, (2018), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicQuantileRegression.m.

[AAp4] Anton Antonov, Quantile regression Mathematica package, (2014), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/QuantileRegression.m .

[AAp5] Anton Antonov, Monadic contextual classification Mathematica package, (2017), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m .

[AAp6] Anton Antonov, MathematicaForPrediction utilities, (2014), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MathematicaForPredictionUtilities.m .

[AAp7] Anton Antonov, Monadic Quantile Regression unit tests, (2018), MathematicaVsR at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/MonadicQuantileRegression-Unit-Tests.wlt .

[AAp8] Anton Antonov, Monadic Quantile Regression random pipelines Mathematica unit tests, (2018), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/MonadicQuantileRegressionRandomPipelinesUnitTests.m .

[AAp9] Anton Antonov, Monadic contextual classification Mathematica package, (2017), MathematicaForPrediction at GitHub. URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m .

ConversationalAgents Packages

[AAp10] Anton Antonov, Time series workflows grammar in EBNF, (2018), ConversationalAgents at GitHub, https://github.com/antononcube/ConversationalAgents.

[AAp11] Anton Antonov, QRMon translator Mathematica package,(2018), ConversationalAgents at GitHub, https://github.com/antononcube/ConversationalAgents.

MathematicaForPrediction articles

[AA1] Anton Antonov, "Monad code generation and extension", (2017), MathematicaForPrediction at GitHub, https://github.com/antononcube/MathematicaForPrediction.

[AA2] Anton Antonov, "Quantile regression through linear programming", (2013), MathematicaForPrediction at WordPress. URL: https://mathematicaforprediction.wordpress.com/2013/12/16/quantile-regression-through-linear-programming/ .

[AA3] Anton Antonov, "Quantile regression with B-splines", (2014), MathematicaForPrediction at WordPress. URL: https://mathematicaforprediction.wordpress.com/2014/01/01/quantile-regression-with-b-splines/ .

[AA4] Anton Antonov, "Estimation of conditional density distributions", (2014), MathematicaForPrediction at WordPress. URL: https://mathematicaforprediction.wordpress.com/2014/01/13/estimation-of-conditional-density-distributions/ .

[AA5] Anton Antonov, "Finding local extrema in noisy data using Quantile Regression", (2015), MathematicaForPrediction at WordPress. URL: https://mathematicaforprediction.wordpress.com/2015/09/27/finding-local-extrema-in-noisy-data-using-quantile-regression/ .

[AA6] Anton Antonov, "A monad for classification workflows", (2018), MathematicaForPrediction at WordPress. URL: https://mathematicaforprediction.wordpress.com/2018/05/15/a-monad-for-classification-workflows/ .

Other

[Wk1] Wikipedia entry, Monad, URL: https://en.wikipedia.org/wiki/Monad_(functional_programming) .

[Wk2] Wikipedia entry, Quantile Regression, URL: https://en.wikipedia.org/wiki/Quantile_regression .

[Wk3] Wikipedia entry, Chebyshev polynomials, URL: https://en.wikipedia.org/wiki/Chebyshev_polynomials .

[CN1] Brian S. Code and Barry R. Noon, "A gentle introduction to quantile regression for ecologists", (2003). Frontiers in Ecology and the Environment. 1 (8): 412[Dash]420. doi:10.2307/3868138. URL: http://www.econ.uiuc.edu/~roger/research/rq/QReco.pdf .

[PS1] Patrick Scheibe, Mathematica (Wolfram Language) support for IntelliJ IDEA, (2013-2018), Mathematica-IntelliJ-Plugin at GitHub. URL: https://github.com/halirutan/Mathematica-IntelliJ-Plugin .

[RK1] Roger Koenker, Quantile Regression, ‪Cambridge University Press, 2005‬.

Phone dialing conversational agent

Introduction

This blog post proclaims the first committed project in the repository ConversationalAgents at GitHub. The project has designs and implementations of a phone calling conversational agent that aims at providing the following functionalities:

  • contacts retrieval (querying, filtering, selection),
  • contacts prioritization, and
  • phone call (work flow) handling.
  • The design is based on a Finite State Machine (FSM) and context free grammar(s) for commands that switch between the states of the FSM. The grammar is designed as a context free grammar rules of a Domain Specific Language (DSL) in Extended Backus-Naur Form (EBNF). (For more details on DSLs design and programming see [1].)

    The (current) implementation is with Wolfram Language (WL) / Mathematica using the functional parsers package [2, 3].

    This movie gives an overview from an end user perspective.

    General design

    The design of the Phone Conversational Agent (PhCA) is derived in a straightforward manner from the typical work flow of calling a contact (using, say, a mobile phone.)

    The main goals for the conversational agent are the following:

    1. contacts retrieval — search, filtering, selection — using both natural language commands and manual interaction,
    2. intuitive integration with the usual work flow of phone calling.

    An additional goal is to facilitate contacts retrieval by determining the most appropriate contacts in query responses. For example, while driving to work by pressing the dial button we might prefer the contacts of an up-coming meeting to be placed on top of the prompting contacts list.

    In this project we assume that the voice to text conversion is done with an external (reliable) component.

    It is assumed that an user of PhCA can react to both visual and spoken query results.

    The main algorithm is the following.

    1) Parse and interpret a natural language command.

    2) If the command is a contacts query that returns a single contact then call that contact.

    3) If the command is a contacts query that returns multiple contacts then :

    3.1) use natural language commands to refine and filter the query results,

    3.2) until a single contact is obtained. Call that single contact.

    4) If other type of command is given act accordingly.

    PhCA has commands for system usage help and for canceling the current contact search and starting over.

    The following FSM diagram gives the basic structure of PhCA:

    "Phone-conversational-agent-FSM-and-DB"

    This movie demonstrates how different natural language commands switch the FSM states.

    Grammar design

    The derived grammar describes sentences that: 1. fit end user expectations, and 2. are used to switch between the FSM states.

    Because of the simplicity of the FSM and the natural language commands only few iterations were done with the Parser-generation-by-grammars work flow.

    The base grammar is given in the file "./Mathematica/PhoneCallingDialogsGrammarRules.m" in EBNF used by [2].

    Here are parsing results of a set of test natural language commands:

    "PhCA-base-grammar-test-queries-125"

    using the WL command:

    ParsingTestTable[ParseJust[pCALLCONTACT\[CirclePlus]pCALLFILTER], ToLowerCase /@ queries] 

    (Note that according to PhCA’s FSM diagram the parsing of pCALLCONTACT is separated from pCALLFILTER, hence the need to combine the two parsers in the code line above.)

    PhCA’s FSM implementation provides interpretation and context of the functional programming expressions obtained by the parser.

    In the running script "./Mathematica/PhoneDialingAgentRunScript.m" the grammar parsers are modified to do successful parsing using data elements of the provided fake address book.

    The base grammar can be extended with the "Time specifications grammar" in order to include queries based on temporal commands.

    Running

    In order to experiment with the agent just run in Mathematica the command:

    Import["https://raw.githubusercontent.com/antononcube/ConversationalAgents/master/Projects/PhoneDialingDialogsAgent/Mathematica/PhoneDialingAgentRunScript.m"]

    The imported Wolfram Language file, "./Mathematica/PhoneDialingAgentRunScript.m", uses a fake address book based on movie creators metadata. The code structure of "./Mathematica/PhoneDialingAgentRunScript.m" allows easy experimentation and modification of the running steps.

    Here are several screen-shots illustrating a particular usage path (scan left-to-right):

    "PhCA-1-call-someone-from-x-men"" "PhCA-2-a-producer" "PhCA-3-the-third-one

    See this movie demonstrating a PhCA run.

    References

    [1] Anton Antonov, "Creating and programming domain specific languages", (2016), MathematicaForPrediction at WordPress blog.

    [2] Anton Antonov, Functional parsers, Mathematica package, MathematicaForPrediction at GitHub, 2014.

    [3] Anton Antonov, "Natural language processing with functional parsers", (2014), MathematicaForPrediction at WordPress blog.