Plot the count or density of the clones at different abundance levels.
Usage
ClonalAbundancePlot( data, clone_call = "aa", chain = "both", xtrans = "log10", ytrans = "identity", plot_type = c("trend", "histogram", "density"), binwidth = 0.1, trend_skip_zero = TRUE, bw = 0.5, group_by = "Sample", group_by_sep = "_", facet_by = NULL, split_by = NULL, order = list(), xlab = "Abundance", ylab = NULL, theme_args = list(), ... )Arguments
- data
The product of scRepertoire::combineTCR, scRepertoire::combineTCR, or scRepertoire::combineExpression.
- clone_call
How to call the clone - VDJC gene (gene), CDR3 nucleotide (nt), CDR3 amino acid (aa), VDJC gene + CDR3 nucleotide (strict) or a custom variable in the data
- chain
indicate if both or a specific chain should be used - e.g. "both", "TRA", "TRG", "IGH", "IGL"
- xtrans
The transformation to apply to the x-axis. Default is "log10".
- ytrans
The transformation to apply to the y-axis. Default is "identity".
- plot_type
The type of plot to use. Default is "trend". Possible values are "trend", "histogram" and "density".
- binwidth
The binwidth for the histogram plot. Default is 0.1.
- trend_skip_zero
Whether to skip the zero values in the trend line. Default is TRUE.
- bw
The smoothing bandwidth to be used for density plots. Default is 0.5.
- group_by
The column name in the meta data to group the cells. Default: "Sample"
- group_by_sep
The separator to use when combining the group_by columns. Default: "_"
- facet_by
The column name in the meta data to facet the plots. Default: NULL
- split_by
The column name in the meta data to split the plots. Default: NULL
- order
The order of the x-axis items or groups. Default is an empty list. It should be a list of values. The names are the column names, and the values are the order.
- xlab
The x-axis label. Default is "Abundance".
- ylab
The y-axis label. Default is "Number of Clones" for trend and histogram, and "Density of Clones" for density.
- theme_args
The theme arguments to be passed to the plot function.
- ...
Other arguments passed to the specific plot function.
For
trendplot, seeplotthis::Histogram().For
histogramplot, seeplotthis::Histogram().For
densityplot, seeplotthis::DensityPlot().
Examples
# \donttest{ set.seed(8525) data(contig_list, package = "scRepertoire") data <- scRepertoire::combineTCR(contig_list) data <- scRepertoire::addVariable(data, variable.name = "Type", variables = sample(c("B", "L"), 8, replace = TRUE) ) data <- scRepertoire::addVariable(data, variable.name = "Sex", variables = sample(c("M", "F"), 8, replace = TRUE) ) ClonalAbundancePlot(data) #> Warning: Removed 104 rows containing missing values or values outside the scale range #> (`geom_line()`).
ClonalAbundancePlot(data, ytrans = "log10") #> Warning: log-10 transformation introduced infinite values. #> Warning: Removed 104 rows containing missing values or values outside the scale range #> (`geom_line()`).
ClonalAbundancePlot(data, plot_type = "histogram")
ClonalAbundancePlot(data, plot_type = "histogram", add_trend = TRUE, trend_skip_zero = TRUE) #> Warning: Removed 104 rows containing missing values or values outside the scale range #> (`geom_line()`).
ClonalAbundancePlot(data, plot_type = "density")
# } 