Explaining a Keras _neural_ network predictions with the-teller

This article was first published on T. Moudiki's Webpage - Python , and kindly contributed to python-bloggers. (You can report issue about the content on this page here)
Want to share your content on python-bloggers? click here.

Last year, in a previous post,
I’ve used Python package the-teller to explain an xgboost model’s predictions.
After reading today’s post, you’ll be able to use that same package, the-teller, to explain
predictions of a Keras neural network trained on tabular data.

We start by installing the following tools:

  • An AutoML system based on Keras:
 pip install autokeras 

It’s worth mentioning that I’m not using autokeras here to obtain a perfect model (try a Random Forest in the
same setting as the one described below 😉 ). Rather,
I’m using it to obtain a relatively good Keras model without much manual tuning.

  • General-purpose Statistical/Machine Learning tools:
     pip install scikit-learn 

  • A wrapper that allows to use Keras models as scikit-learn models (fit, predict, model selection, pipelines, etc.):
     pip install scikeras 

  • Scientific computing/data wrangling in Python:
     pip install scipy==1.4.1 

  •  pip install numpy 

     pip install pandas 

  • Tensorflow (Keras is built on top of this package)

  • A tool for explaining predictions of Statistical/Machine Learning models on tabular data:
     pip install the-teller 

  • After the installation, we import these packages into Python:

    import numpy as np import pandas as pd import autokeras as ak import teller as tr from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from scikeras.wrappers import KerasRegressor 

    The dataset used for this demo, the California housing dataset (imported by sklearn’s fetch_california_housing), has the following description:

    - __Response__ / __target__ to be explained: median __house value for California districts__, in hundreds of thousands of dollars ($100,000) - __MedInc__: median income in block group - __HouseAge__: median house age in block group - __AveRooms__: average number of rooms per household - __AveBedrms__: average number of bedrooms per household - __Population__: block group population - __AveOccup__: average number of household members - __Latitude__: block group latitude - __Longitude__: block group longitude 
    # Input data from california housing X, y = fetch_california_housing(return_X_y=True, as_frame=False) # Columns names X_names = fetch_california_housing(return_X_y=True, as_frame=True)[0].columns # Split data into a training test and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=13) 
    # Initialize autokeras's structured data regressor. reg = ak.StructuredDataRegressor( overwrite=True, max_trials=100, loss="mean_squared_error", ) # It tries 100 different models. Try a lower `max_trials` for a faster result. # Feed the structured data regressor with training data, and train on 20 epochs. reg.fit(x=X_train, y=y_train, epochs=20) # Predict with the _best_ model found by autokeras. predicted_y = reg.predict(X_test) # Out-of-sample error (Root Mean Squared Error) print(mean_squared_error(y_true=y_test, y_pred=predicted_y.flatten(), squared=False)) 

    The model found by autokeras, reg, is exported to a Keras model, whose summary
    of layers and parameters can be printed:

    model = reg.export_model() print(model.summary()) 
    Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 8)] 0 multi_category_encoding (Mu (None, 8) 0 ltiCategoryEncoding) normalization (Normalizatio (None, 8) 17 n) dense (Dense) (None, 512) 4608 re_lu (ReLU) (None, 512) 0 dense_1 (Dense) (None, 1024) 525312 re_lu_1 (ReLU) (None, 1024) 0 regression_head_1 (Dense) (None, 1) 1025 ================================================================= Total params: 530,962 Trainable params: 530,945 Non-trainable params: 17 

    Now that we have a Keras model, we can use a scikeras wrapper to obtain a
    sklearn-like regressor (required by the-teller):

    reg2 = KerasRegressor( model=model, loss="mse", metrics=[mean_squared_error], ) reg2.fit(X_train, y_train) 

    All the ingredients for feeding the-teller’s Explainer are now gathered:

    # creating the explainer explainer = tr.Explainer(obj=reg2) # fitting the explainer to unseen data explainer.fit(X_test, y_test, X_names=X_names, method="avg") 
    explainer.plot(what="average_effects") 

    average effects

    According to this Keras neural network, all else held equal, the average number of bedrooms
    and the median income in block are the most important drivers for an increase in
    housing value. Surprisingly too (or not?), when the housing age in block group is increased by a little \(\epsilon\),
    the housing value does not change on average – all else held equal.

    explainer.summary() 
    Heterogeneity of marginal effects: mean std median min max AveBedrms 1.461185 1.491522 1.241837 -2.834498 7.180917 MedInc 0.412377 0.251765 0.394124 -0.215032 1.737655 Population 0.000037 0.000209 0.000026 -0.000666 0.001251 HouseAge 0.000000 0.000000 0.000000 0.000000 0.000000 Longitude 0.000000 0.000000 -0.000000 -0.000000 -0.000000 Latitude -0.042189 0.164907 -0.039731 -0.743647 0.643677 AveRooms -0.085101 0.228191 -0.056002 -0.938256 0.783281 AveOccup -0.567745 0.487438 -0.422143 -2.381372 0.105577 

    Heterogeneity of marginal effects:

    explainer.plot(what="hetero_effects") 

    heterogeneity of effects

    Individual effects on the whole test set:

    print(explainer.get_individual_effects()) 
     MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \ 0 0.156049 0.0 0.184784 0.161584 -0.000261 -0.108461 -0.056902 1 0.667402 0.0 0.031313 4.240315 -0.000012 -1.353364 0.575099 2 1.190386 0.0 -0.524089 2.302171 -0.000037 -0.957003 -0.064196 3 0.184671 0.0 0.048120 0.186709 0.000074 -0.137837 -0.124834 4 0.297273 0.0 -0.282084 1.098558 -0.000015 -0.411185 0.053061 ... ... ... ... ... ... ... ... 4123 -0.052363 0.0 0.080290 0.521982 -0.000197 -0.678636 0.213984 4124 1.141179 0.0 -0.103344 3.325628 0.000310 -1.212456 0.199239 4125 0.314250 0.0 -0.406678 0.826998 -0.000032 -0.110662 0.045599 4126 0.354891 0.0 0.022459 0.639016 0.000046 -0.280295 -0.103073 4127 0.274952 0.0 -0.089247 0.888977 0.000013 -0.297384 0.239034 Longitude 0 -0.0 1 -0.0 2 -0.0 3 -0.0 4 -0.0 ... ... 4123 -0.0 4124 -0.0 4125 -0.0 4126 -0.0 4127 -0.0 [4128 rows x 8 columns] 
    To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - Python .

    Want to share your content on python-bloggers? click here.