Skip to main content

You are not logged in. Your edit will be placed in a queue until it is peer reviewed.

We welcome edits that make the post easier to understand and more valuable for readers. Because community members review edits, please try to make the post substantially better than how you found it, for example, by fixing grammar or adding additional resources and hyperlinks.

3
  • $\begingroup$ I have two blank pieces of paper. I flip a coin and write the outcome on both of them and fold them. I hand you one of the two pieces and I keep the other. This process creates two random variables. You may not know the value of either, but if you measure one, you immediately know the other. Does this process entangle the pieces of paper? $\endgroup$ Commented Jan 9, 2020 at 16:28
  • $\begingroup$ Great question! The analogy may seem valid at first, but there's one problem, once qubits become entangled you can perform additional operations on them, modifying their internal state simultaneously. This behavior can be used for instance to implement quantum teleportation. In your case we end up with a classical deterministic system in which states are pre-determined, and further operations that take advantage of physical entanglement phenomenon are not possible. $\endgroup$ Commented Jan 9, 2020 at 22:52
  • $\begingroup$ Indeed! I would add a short discussion along these lines to complete your answer. $\endgroup$ Commented Jan 10, 2020 at 12:16