I'm trying to solve exercise 10.57 in Nielsen-Chuang, where you have to obtain the standard form check matrix of Shor's code. I followed the procedure laid out in the earlier chapter but then realised that applying the Gauss-Jordan method seems to leave a negative value on my $Z$-side.
How to interpret this, or have I just made a mistake? Here's my result: $$\begin{bmatrix} \left.\begin{matrix} 1& 0& 1& 1& 1& 0& 0& 0& 1\\ 0& 1& 0& 1& 1& 1& 0& 1& 1\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0 \end{matrix}\right| \begin{matrix} 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0& 0& 0& -1\\ 0& 0& 0& 0& 1& 0& 0& 0& 1\\ 1& 0& 0& 0& 0& 1& 0& 0& 0\\ 0& 1& 0& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 1& 0 \end{matrix} \end{bmatrix}$$