Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the comrade matrix corresponding to an orthogonal polynomial series
ResourceFunction["ComradeMatrix"][cof,poly] yields the comrade matrix corresponding to |
| "ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[i,x] |
| "ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[i,x] |
| "Hermite" | Hermite polynomial HermiteH[i,x] |
| "Laguerre" | Laguerre polynomial LaguerreL[i,x] |
| "Legendre" | Legendre polynomial LegendreP[i,x] |
| {"Gegenbauer",m} | Gegenbauer polynomial GegenbauerC[i,m,z] |
| {"Laguerre",a} | Jacobi polynomial JacobiP[i,a,b,x] |
| {"Jacobi",a,b} | Jacobi polynomial JacobiP[i,a,b,x] |
The comrade matrix of a Legendre series:
| In[1]:= | |
| Out[1]= | |
Compute its characteristic polynomial:
| In[2]:= | |
| Out[2]= | |
The characteristic polynomial is a scalar multiple of the corresponding orthogonal polynomial series:
| In[3]:= | |
| Out[3]= | |
Comrade matrix of a Jacobi series with symbolic coefficients and parameters:
| In[4]:= | |
| Out[4]= | |
An equivalent specification:
| In[5]:= | |
| Out[5]= | |
Generate a colleague matrix:
| In[6]:= | |
| Out[6]= | |
Use the comrade matrix with Eigenvalues to find the roots of a Chebyshev series of the second kind:
| In[7]:= | |
| Out[7]= | |
Compare with the result of using NSolve and the resource function OrthogonalPolynomialSum:
| In[8]:= | |
| Out[8]= | |
This work is licensed under a Creative Commons Attribution 4.0 International License