Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the measure of a simplex or simplicial complex
ResourceFunction["SimplexMeasure"][simplex] gives the measure of simplex. | |
ResourceFunction["SimplexMeasure"][{simplex1,simplex2,…}] gives the measure of the simplicial complex containing simplex1,simplex2,…. | |
ResourceFunction["SimplexMeasure"][complex,d] gives the d-dimensional measure of complex. |
| Point[v] | a point |
| Line[{v1,v2}] | a line segment |
| Triangle[{v1,v2,v3}] or Polygon[{v1,v2,v3}] | a filled triangle |
| Tetrahedron[{v1,v2,v3,v4}] | a filled tetrahedron |
| Simplex[{v1,v2,…,vn}] | an n-1 dimensional simplex |
| {simplex1,simplex2,…} | a list of simplices |
| {{v1,2,…,v1,n},{v2,2,…,v2,n},…} | a list of lists of vertices |
| MeshRegion[…] | a mesh region |
| BoundaryMeshRegion[…] | a boundary mesh region |
Get the measure of a Simplex:
| In[1]:= | |
| Out[1]= | |
Compare to Euclidean distance:
| In[2]:= | |
| Out[2]= | |
Get the measure of a Triangle:
| In[3]:= | |
| Out[3]= | |
Compare to Area:
| In[4]:= | |
| Out[4]= | |
Get the measure of a random 100-dimensional Simplex:
| In[5]:= | |
| Out[5]= | |
Get the measure of a simplicial complex, represented as a list of simplices:
| In[6]:= | |
| Out[6]= | |
Get the measure of a simplicial complex, represented by lists of vertices:
| In[7]:= | |
| Out[7]= | |
Specify a dimension to measure:
| In[8]:= | |
| Out[8]= | |
| In[9]:= | |
| Out[9]= | |
| In[10]:= | |
| Out[10]= | |
Get the measure of a MeshRegion:
| In[11]:= | |
| Out[11]= | |
| In[12]:= | |
| Out[12]= | |
The measure for Point corresponds to counts:
| In[13]:= | |
| Out[13]= | |
| In[14]:= | |
| Out[14]= | |
| In[15]:= | |
| Out[15]= | |
For mesh regions, SimplexMeasure is equivalent to RegionMeasure:
| In[16]:= | |
| Out[16]= | |
| In[17]:= | |
| Out[17]= | |
| In[18]:= | |
| Out[18]= | |
SimplexMeasure works for arbitrary dimension:
| In[19]:= | |
| Out[19]= | |
| In[20]:= | |
| Out[20]= | |
Compare to RegionMeasure:
| In[21]:= | |
| Out[21]= | |
SimplexMeasure performs best when given lists of vertices as an array:
| In[22]:= | |
| In[23]:= | |
| Out[23]= | |
| In[24]:= | |
| Out[24]= | |
Get the measure of the first 10 standard simplices:
| In[25]:= | |
| Out[25]= | |
| In[26]:= | |
| Out[26]= | |
Here’s the corresponding formula:
| In[27]:= | |
| Out[27]= | |
SimplexMeasure uses more efficient methods for simplicial complexes below 6 dimensions:
| In[28]:= | |
| Out[26]= | |
| In[29]:= | |
| Out[29]= | |
Measure a simplex and its boundary:
| In[30]:= | |
| Out[26]= | |
| In[31]:= | |
| Out[31]= | |
| In[32]:= | |
| Out[32]= | |
SimplexMeasure is not supported for abstract simplices:
| In[33]:= | |
| Out[33]= | |
| In[34]:= | |
| Out[34]= | |
| In[35]:= | |
| Out[35]= | |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License