Programming Methodology-Lecture26

Instructor (Mehran Sahami): All right. Welcome back to — what kind of day is it going
to be in 106a? Anyone want to — fun-filled and exciting. It always is. Thanks for playing
along. So a couple quick announcements before we start. One announcement is that there
is one handout today, so several people have asked in the past, these programs that I
make in these classes are kind of cool. | would like to be able to share them with my
friends and relatives and whoever else. We're going to talk a little bit about how you do
that today and what that means underneath the hood, but the handout actually explains it
all. It's this notion of a jar file. We'll talk more about a jar file as we go along.

The graphics context, for those of you who are doing it, is due today. Just wondering,
quick show of hands, how many people entered the graphics contest. Wow. Not as many
as | would've thought. There could be a couple people who are at home, even if you don't
win of getting 100 on the final in a random drawing. So that's a good sign.

One thing I do want to check, I just heard a little bit before class that some folks were
having some trouble submitting their graphics contest because there actually might have
been an issue with the server that takes submissions. So if you submitted to the graphics
contest, whether you're in here or you happen to be watching the video, email me, and let
me know what the name of your contest entry was. That way, | know for sure that we
actually got all the contest entries that we think we had, and if we didn't get one, | can
email you back. The thing I would ask you is, if you can't email me any time this
weekend because this weekend is actually, when we're going to make the first pass
looking over all the contest entries, and then we're going to have a small pool that we'll
take to the section leaders. They will vote and give the winner. I'll announce the winner
in class next week.

I might show a demo of the winning two as well. We might do the random drawing in
class as well to see who actually gets the third coveted random drawing spot, even if you
don't win. So please email me if you entered the graphics contest, just to make sure.

One other thing with email for SCPD students, | know it's still a little too early to think
about final exams, but if you're an SCPD student, it's not too early. If you're not an SCPD
student, it's not too early, either. But for SCPD students, if you're taking the final exam, if
you plan of taking it at your sites and you're not going to come on campus to take it,
email me by 5:00 p.m. December 5, letting me know that you're taking it at your site and
the name and email of your site coordinator, just like the midterm. That way, | can get the
information to your site coordinator for the final well before the final.

If you're planning on coming on campus to take the final, you can feel free to send me an
email to say you're coming on campus. If I don't hear from you, | will assume you're
coming on campus. So you only need to email me if you're taking it at your site, so please
do that if you're an SCPD student and you plan on taking it at your site.

Any questions about anything we've done so far before we dive into our next great topic?
All right.

One of the things that we've done the whole time in this class is we use these things
called the ACM libraries. The ACM libraries are a set of libraries that are actually created
by a task force of people. The ACM is the Association of Computing Machinery. We
talked about them at the very beginning of the class when we talked about these libraries.
They put together some nice libraries of stuff that are really useful for teaching, which is
why we use them.

Today, what I'm going to do is lift a little bit underneath the hood and talk about standard
Java, which is what you would get if you didn't use the ACM libraries and you just used
the standard Java libraries. Now, there's no reason why you can't continue to use the
ACM libraries after this class. They're just another set of libraries that were written by a
group of people that you're certainly welcome to use.

So there's no reason why you should stop using them, but there were a couple important
issues related to standard Java. Now it's time for you to know. So the first thing that's
related to thinking about standard Java is when you're running your programs, when you
go into Eclipse and you click on the little running guy to compile your programs. It give
you a list of what classes you actually might want to run.

If you only have one project, you may only get one choice, but one of the things you kind
of think about is in the name surfer program, | actually have four or five different classes.
How come it always knew which class to run? How come it always knew the name surfer
class was the class that I actually should run? Anyone want to venture a guess?

Student: [Inaudible].

Instructor (Mehran Sahami): It's the only class with [inaudible] which is very related to
an underlying issue. It's the only class that actually was extending programs. So one of
the extended programs, what actually was happening in these ACM libraries is you were
getting a method called main. Main is actually the place — you're old enough to see main.
Main is actually the method at which Java classes actually start running.

So one of the things you should think now, you never wrote a method called main. |
never saw a method called main, and you're telling me that's where Java programs
actually start running. Yeah, in fact it is. It's because programs provided this main method
for you. What this main method did in the program was essentially get the rest of you
program running by getting a few things set up and then kicking off your run method. So
you didn't actually need to worry about this.

But now you're sort of old enough to actually see what that main method is all about. So
if we think about what this main method does, the header for the main method is also
kind of weird. This is part of the reason why we never showed you the main method
before. The header for the main method is actually public static void main, but we're not

done yet. Main actually has some arguments. It has an array of strings called args and
arguments, and then something in here happens inside of me.

If we showed this to you on the first day, we would've had to go through and explain
what all these words meant before we explained what main even was, before we
explained how you write your first program. That would've been a pain. Now we can just
tell you. Public mains is a public method. You know that. You probably recall the other
public methods you've written. Static means that this is actually a method that belongs to
the class — it's not something that you would actually call on a particular object.

So you never have some object — like, here's my object X, and I call X .main. Main is just
something that gets called. It's a class method as opposed to being a method that gets
called on an instance. Void means it just returns nothing.

What is getting passed in here is an array of strings. Where is that array of strings coming
from? This actually harks back to when computers weren't all nice and graphical and
everything. When people wrote programs, the wrote program and were typing on what's
called a command line. They wrong the name of the program out. They actually typed it,
and then they typed a bunch of things that they wanted to be passed into the program
such as initial information to start that program. That was the initial thing, so if you had
some program like name surfer, you might actually start off by giving the name of the
program.

Then after name surfer, you might give it the name of the data file, like data dot text. You
might've given it some other things as well that were separated by spaces. This list of
stuff is essentially what gets passed in here as arguments. They're strings, and this is how
the program would actually know what came in on the command line when the program
was kicked off. Java's not that old of a language. It sort of came around and gaining
popularity in 1995. People weren't doing a lot of this in 1995. | already had my mouse
and my folders and all this other stuff, even if you were six years old. You probably did.

You're like, | never typed this stuff, so why do | care about it? The reason why Java's
derived from another language called C, and there's a variation called C++ that was
created when people were writing programs in the days of yore. The whole notion of
main and having some arguments to get passed to main kind of came along with the
baggage of actually having a program language that matches the same style programming
languages when they did do this.

So a lot of the times in real Java programs these days, there aren't really any arguments. If
there are arguments, there's some system parameters or something like that. We don't
usually worry about them. So when you go and look at some other Java program that isn't
using the ACM libraries and you see this main thing, and you're wondering what it's all
about, you can think of main analogously to run. It's just where the whole time you've
been thinking of run as where you're execution starts, main is really where execution
started.

If you think about execution actually started in main, so how did this thing actually kick
off my run method? Now you're sort of old enough to see that, too. So what it actually
did — let's say this was the main method is something like name surfer. So somewhere
inside of a program, inside of the ACM libraries for program, we had this main method
that figured out what the name of your class was. Essentially, it had a one-liner in it that
would've been equivalent to this.

New name surfer dot start cards. So it's a one liner. Now you know what this means.
What was it actually doing? When main started, no objects exist in the world. It's a static
method. So there's no object that you're giving the main message to. Main just wakes up
and says, hey, I'm main. What am | going to do? Why don't | create some object of this
particular type, name surfer, which happens to scan an object, which is your program.
Remember your program, as we kind of talked about, implements the run method, and
actually a program underneath the hood implements the runable interface that we talked
about last time, with threads. We talked about the runable interface.

All programs implement the runable interface. How do you kick off something that's
runable? You say start. So what it basically did was created and object of your class,
which was name surfer, and told it to start. It happened to start pass along these
arguments, but you never needed to see those arguments. As a matter of fact, you never
did see them because when your object was in stand shaded, it didn't expect any
arguments. So the arguments actually got passed to this thing called start, which just
ignored them, basically, and then started your run methods to kick everything off.

Last time when we talked about start, we talked about this in the context of threads. So
we said, oh, you create a new thread, and the object that's you're going to start running,
we put inside a thread. We kick the thread off with start. In this case, we're not actually
creating a new thread. We're just saying we want to start executing this object I just
created. It implements runable, so you'll start running from the method run, but I'm not
creating it in thread. So this thing is going to execute in the same thread of execution as
the entire class.

So I don't suddenly kick off something that's running in parallel with this guy. It's
actually going to sequentially start name surfer, and that's the last thing this guy does.
Run your whole program. Any questions about that? Kind of a funky concept, but that's
basically what's going on. You should see it. We were creating an instance of your
program and then just kicking it off. That's why, this whole time, we had this thing called
the run method that had to be public because it was implementing the runable interface.
But now you've seen main.

We could've just had main in your program to begin with and included all this code. The
only reason we didn't put it in there before is because we didn't want to explain any of
this stuff. In week two of the class, right after [inaudible] all holding hands and singing
Kum Ba Ya. We're like, oh, it's [inaudible] the robot. Let's give Java, public static void
main. Straightening args. You're like, what is going on?

We hadn't done arrays. We hadn't done classes worrying about static. We certainly hadn't
done methods. We hadn't even done parameter passing. So we just waited until the end.
Now you see it.

Now that we have that idea, now we can think about, okay, if this is kind of what the
standard Java world is, let me think about taking this idea and using it to help me take my
existing programs that I've written and pack them up into a form so | can share them with
family and friends. So that's what we're going to do next. The basic concept of doing this
is something that's called a jar file. You've actually seen jar files before because you've
been working with something this whole time in your projects called ACM dot jar. This
was just a jar file that contained all the ACM libraries.

Basically, all a jar file is, where does it get its name. It's not a big mason jar, although you
can think of it like that. It stands for Java archive. That's where the name comes from.
The basic idea behind the jar file is this can contain a whole bunch of different stuff.
Most of the time, what it contains, is a bunch of classes in Java. You can think of this as
the complied version of the classes.

You can actually put source code inside the jar if you want, but most of the time when
you get a jar, it doesn't have the source code associated with it. I just has the actual dot
class files, which are the compiled version of the files. So you could put source files in
here if you wanted. You could put data files in here if you wanted. You could put a bunch
of things in here if you want, but we're really going to focus on the case of putting classes
in here.

So one of these already existed for you. It was ACM dot jar, and we're going to figure out
how to actually create some of these ourselves and use them because you can actually
think of them as something that's executable.

So if we come to the computer, here's name surfer. This is an actual working version of
name surfer, so I'm not going to show you the rest of the files in case you're taking
[inaudible]. All the code's in here, so the first thing I did in the name surfer program is |
thought about, hey, I want to think of this in the standard Java world now, even though
you're still using the ACM libraries. When | want to build this jar, | want to build it in a
way that sort of makes it maximally portable. | can give it to someone who's over here on
this PC and someone who's over here on this Mac. They don't need to have a Eclipse or
anything like that. They can just run it. That's the whole point.

So the first thing I'm going to do is to introduce my friend, the main method. So basically
I put in the code you just saw. | add a method, public static void main has this array of
strings called args that sets the parameters. That's just the way main is always defined to
be. What it's going to do is create a new name surfer object and kick it off. That's the only
thing I need to add to my program. So anywhere you had some class that extended
program, you would add these three lines of code to get it compliant with standard Java.

Once we do that, we need to create the jar file, which is the thing we're actually going to
be able to execute. One thing you might be saying to yourself is that the ACM libraries
already provide this. So why am | putting it explicitly in there? As a matter of fact, it's
not super required that it be in there. The real reason why we put it in there is to try and
maximize portability. Even though Java's supposed to have this property where we write
the Java code once and it can run on PCs and it can run on Macs and it can run on Vista
and Tiger and all this other stuff, in reality, there's some little differences between these
operating systems. So little problems creep up here than there, every once in a while. You
actually saw a few of those in class on occasion. Some of you experienced them in the
Lair.

By putting in this line explicitly rather than kind of relying on the code that's in the ACM
libraries, this is actually doing a bunch more complicated stuff. It needs to infer what the
name of your class was. You never told it explicitly, hey, ACM library, | need a new one
of these guys. Java has a facility called reflection where it can go and say, oh, let me take
a moment to reflect. I'm going to go and look at the names of your classes and then do
something to actually generate some code based on the names of your classes, which is
what it was doing.

But that kind of stuff can get a little bit frosty, so we're just going to say, hey, ACM, don't
worry about it. I'm just giving it to you. I'm a nice guy. So just put it in to make it
explicit. It maximizes portability is the main reason we put it in.

So how do we create the jar file? What we're going to do — these steps are all in
excruciating detail in your handout, so you don't need to worry about scribbling down
notes quickly. What we're going to do is you first click — that's the most difficult part of
the whole thing. You select the project that you want to create the jar file from. So name
surfer. Then we go to the file menu, and we pick export. So this whole time you were
doing imports when you were bringing stuff in, now it's finally time to give something
back in the form of an export.

So what you want to do when you click export is it brings up a little dialogue box.
Sometimes this is closed. Sometimes it's open. It's not a big deal if it's closed. Open it.
Inside Java, you click on jar file. That's what you want to create. It has this nice little jar
icon there to remind you it's a jar file. You click next. I'm just going to take you through
all the steps.

We need to specify a couple things here. First we need to specify what's in the jar file. So
I'm going to open up name surfer, and what I'm going to put inside the jar file — I don't
want to have all of name surfer in the jar file. In terms of if you throw everything in there
including this stuff called dot project and dot class pass, it actually gets a little bit
confused. Some of those things are not germane to what we want to pack up in our jar.
They're just kind of other administrative information.

What we really want to have is everything inside the default package. So I just click on
default package. I can double click on this to make sure that all of my Java files were

checked. That's what I want in my jar. | want basically all of my Java files or the
compiled version of all of my Java files. | make sure that this is clicked. It's clicked by
default. Just make export generated class files and resources. So what it's going to do is
compile those Java files into their corresponding class files. That's what it's going to put
in the jar.

There are other options, like I can export the Java source files if | wanted to. Then | give
someone the actual source code. Most of the time, you don't want to do this if you don't
want peoples sniffing through your source code. You're like, here, take the compiled —
the ACM libraries, we're not going to give you the source code. Just take the ACM
libraries. They're good for you.

So once we have this, we need to specify where we want to save this jar file. So that's
what select export destination. They should've just said, where do you want to save it.
That's the export destination. We can browse around. Basically, I've already created a
folder that has all my name surfer code in it over here. I'm going to save the jar file in that
same folder. So this is just in the same folder for my project called name surfer that has
all of my class files in it. You can put it wherever you want, just don't forget. That's kind
of the key.

I’m going to save it here. You don't need to worry about the options down here. They're
just fine in the defaults that they're at. You click next. Then you come to the screen that
seems like, what's going on. Export files with compile warnings. Yeah, we just want to

export everything. So we just click next.

This is the most interesting part of the whole thing. What we want to do when we actually
create this jar file, and this is something we only need to do when we have other jar files
like the ACM libraries, we need to generate a manifest file. Basically, all a manifest file
is, it's a complicated name. It sort of sounds formal. It sounds like they're on a boat, and
they're like, oh, where's the passenger manifest? Really, all a manifest is — I'll show you
the manifest file. It's two lines long, and then you add one line to it. It's basically just a
little bit of administrative information that's kept around with your jar file so it knows
what kind of stuff you're using with this jar file. That's all it is.

So what we want to do is generate the manifest file. Make sure you save the manifest in
the workspace is checked, which it should be. Then you need to specify where you want
to save the manifest file. The place | want to save it is basically in the same folder for my
name surfer project in the name manifest. You could browse around if you wanted to, but
usually the name you give it is the name of the folder that all your project stuff's in, and
then the name manifest, which is going to be the actual name of the file. Any questions
about that? Manifest file?

The other thing you need to do when you're specifying a jar is a jar's just a bunch of
classes. It needs to know in some sense if someone ends up running this jar — you'll see
that in just a second. You can run a jar — where should it start? Which class should | call
its main method. That's what you specify here. Select the class of the application entry

point. It's kind of a very formal way of saying, where should I start running? So the place
I want to start running, it lists to you all the classes that have a main method. Those are
all the ones that can start running. Name surfer is the only one.

So I click okay. So it says the main class is name surfer. Now there's no more next
buttons. Now all I can do is click finish, and I just created a jar file. You're like, oh,
[inaudible] double click. Double click. We're not there yet.

There's two things that you'll notice if you look over here in the package explorer. You'll
notice now we have something called a manifest file because that's where | saved it. |
also have name surfer dot jar, the jar file | just created. They were both put in the same
folder with my other files. That's were | wanted to save them so they happened to show
up here in the package explorer. Here's the funky thing. Even though we created this
manifest, and we created this jar, they don't have quite the right information that we want.
So what we do is we double click on the manifest file to open it up. Here's the whole
manifest file.

It's got a version, which is 1.0, and it's got the main class, which is name surfer. Why
does it know the main class is name surfer? Because | told it. That's the application entry
point. Just for letting me know that | told it, that's where the application starts.

There's one other thing | need. What | need to do is say, you know what, that's a good
time, but you also need to use the ACM libraries. It says, you didn't tell me about the
ACM libraries. You say, well, now I'm going to add the coveted third line that was talked
about in the manifest file. So I'm actually going to modify the manifest file and add
something called a class path.

All a class path is, it actually looks just like this, C-P. Class path just tells basically the
application what other stuff were you using. Are there other jar files that you're using? So
what you specify here is the name of any jar files that you're going to be using as part of
your program, separated by spaces.

So I'm going to use ACM dot jar. Here's ACM dot jar over here. I'm going to use the
ACM libraries, and those are all in some jar file. I'm also going to use the jar file I just
created, name surfer dot jar. If | had three or more jar files, I'd list them all on the same
line. So if you go and write some application some day where you're like, hey, I got this
jar file for my friend. Here's this jar file | downloaded from the web, which I wouldn't
encourage you to do, and there's this other job file from somewhere else. You just list
them all here with space in between.

Then we save the file. That's probably the most difficult thing that people forget. So you
save the file. You save the manifest file. What do you do after you do all this? Create a
jar all over again. Why? Just trust me.

Here's how it's going to work. I'm going to do it a little bit different this time. Rather than
going to the file menu and picking export, I'm going to take the advanced course. I'm

going to right click on the project name and click export. It brings up exactly the same
window. I'm going to export a jar file. Come over here. What do | want to export? Oh,
yeah. It's all this [inaudible] again. What | want to export is not all this stuff. | just want
to export everything in my default package. Where do | want to save it? | want to save it
in the same place | had before. You might say, but aren't you going to replace the one that
already exists? Yeah, | need to replace the one that already exists because | updated my
manifest.

I need to say it's not just about you anymore. Now it also involved ACM jar. You can
replace the old one. So I'm going to put it in the places before. Then I click next. Here's
the thing about export warnings, export affairs. | don't care. I'm just going to export. Here
is the only place where things are different. The second time | go through this whole
thing, | don't want to generate another manifest file. | generated a manifest file the first
time, and then | modified it. What | want to do is use that modified manifest file. So | say
use existing manifest from workspace, which is again, just a formal way of saying use the
manifest file that's already there.

It asks me, where is the manifest file? Strangely enough, if you look, this is exactly the
same text as here. No coincidence. You just saved it. That's the one you want to use. It's
going to be the same name. Now notice which class of the entry point is grayed out. It's
grayed out because I told it before, your entry point is name surfer. That's in the manifest
file. If that's already in a manifest file, I'm using it, it doesn't need to know it again. So it
doesn't even let me specify it again. Just say that's the difference. Then I click finish.

They give me one last one. Are you sure you want to override that last jar file? He was
your friend. | say yes. We didn't know each other that well. Now I've created this jar file.
What do | do now? Well, | kind of come over here, and | say, here's the jar file I just
made. Now one thing I can do with the jar file is I can double click it. If I double click on
the jar file, it just starts kicking off the name surfer application. So I don't need Eclipse
anymore to go and run and have a little running dude. | have a little application.

I'm like, oh, yeah. How popular was that? Bob's kind of fallen off in the meantime. There
are some other interesting ones. | was looking at these the other night. VVerna. After the
'60s, done deal. Thanks for playing. So name your children Verna. Make a comeback.

So name surfer's just kind of running here. It's fun. It's just a little stand-alone application.
If you wanted to pack this up and send it to a friend of yours, you wouldn't just send
name surfer dot jar. What you would do is say, hey, you know what | want to do? | want
to create — I'll just do it in here — some new folder. So I'm going to create some new
folder, and I'll call this my program or whatever you want to call it. I'm just not going to
call it name surfer again because | already have a folder called name surfer. My program.
What I'm going to put in my program, that folder, is the jar of my program. I'm also going
to put in the jar of the ACM library because | also need that jar. That's separate.

I also need in here any data files like names dot data. That's all the data that gets read
when the program starts. It's not like magically that's just going to be there now. It's still

going to go and try to find that file. So I still need to put all that stuff here. Now this
folder is something | can zip up and send it to a friend of mind. When my friend gets it,
they would be like, oh, name surfer dot jar. Then they get going.

So now you can package up any program that you've written in this class. Remember to
put in main. You got to go through this two-part [inaudible] the jar, export it, process,
modify the manifest, create another jar, put it out there again. But you're good to go. Any
questions about that? Now you can package up and share with friends.

What's even cooler than sharing with friends that you can email stuff to is sharing with

friends on the web. You just have millions of friends on the web. Most of them you just
don't know about, but they're probably on in the late hours of the night, looking at your

web pages and things. You can actually take any files that you create here, like jar files,
and make them available in a web browser.

There's one other thing I should mention, and this is kind of a little thing. Before you go
and create all this stuff and send it off to your mom and dad and be like, mom, dad,
breakout. Go play. It's a good time. In order for them to run your jar files, they need to
have the Java run time environment installed. Remember on the second week of class
where we said go to the CS106 web site. You need to download a clip. There's this thing
called the JRE you also need to download.

If you have a make, the JRE in most cases is already installed. If you have Windows, it's
not installed. They need to go down, and you can send them to the CS106 page and say
download the JRE. Here's a copy of handout No. 5. Go ahead and install it, and then they
can run your programs. Your program can't run if the computer doesn't have Java, right?
It's a bunch of stuff that's going to execute Java byte code, and your computer's like,
what's Java byte code? | don't know what to do with it, so it won't run. They need the
Java Runtime Environment.

Now assuming someone has the JRE, they can go to a web page. You might put some
page on the web that allows you to load your applet. Your applet is just a webified
version of your program. So here look. It's running inside a web browser. This isn't the
actual application. This is my web browser. | could go to some search engine from here.
I'm sitting in the web browser. I'm not just running a regular application on my desktop.
This guy's actually running in my web browser.

Here's how | make it happen. | create a web page. If you don't know about HTML and
creating web pages, unfortunately I can't explain that to you in five minutes. What | can
show you is basically what this file's going to look like. So if you know a little bit of
HTML or you just want to essentially copy and paste this idea, this will work for you. So
all you do is say — the entire page that allows your applet to run. You say this page is
HTML. There's these little things called tags.

The name of that page is name surfer. | want to create a little table. I'm going to create a
little border around my application. What's my application? My whole application is right

here. | have an applet. What's the name of the archive, which is a Java archive that
contains my applet? It's name surfer dot jar. Code is what's the entry point. This guy no
long has a manifest file available to us. What's my entry point? Name surfer dot class.
That's where you start running. So it says I'm going to go name surfer dot class, find its
name. That's where | start running.

The space I'm going to give you to run on the screen is 700 by 500. That little snippet of
code is what goes on whatever web server this is serving on. It looks for those jar files,
slaps them into the page and then they're good to go to run more java program inside their
web browser. How many people know HTML? You folks. There's some number of folks
that this might be a reasonable thing to do. If not, you just don't need to worry about it.
It's not a big deal.

The one other thing you should know if you create a web page is that when something's
running in the web page, it doesn't have access to the rest of the file system. What that
means is if | actually happen to be over here — notice | have index dot HTML. | have
name surfer dot jar, and | have ACM dot jar. What happens in my names dash data file?
It doesn't exist. Why doesn't it exist? Because | couldn't read it anyway. Once I'm running
on the web browser, for security reasons, it doesn't let you go in and pull stuff out of your
file system.

If it did, people could do really bad things to your computer. So what you need to do if
you want to find that data, you let us run name surfer on the web. What did you do?
Here's the dirty little secret. | actually created a giant array that had all the data in it and
made it part of the program. So sometimes you can do stuff like that if you don't actually
want to read from a file. The other thing you can do is you can take those files and
include them in the jar file because the jar file cannot only have compiled [inaudible]. It
can also have data files. That's another way of doing it if you want to do it that way.

We don't have time to go into all the details. It's kind of the same process. When you're
exporting stuff to the jar file, you include some data files in there. So what's creating the
executable. Now that we know all this funky stuff about executables put on a web page if
I want. I'm feeling happy. I'm good to go. It's time to come back to our friend, standard
Java.

Standard Java's what allowed us to think about doing this stuff because we learned about
main. | want to show you a couple examples of programs that actually don't use the ACM
libraries at all to show you why we use the ACM libraries. One of the things you might
be wondering is why weren't we just doing the standard Java thing the whole time? Part
of the reason is things are just so much easier and cooler when you have the ACM
libraries.

So if you go back over to Eclipse, we're kind of done with name surfer and all this
manifest stuff. Here's a program that's written in standard Java that writes out hello world
on the screen. This is something you kind of did in the first class by saying public class

hello world extends console program in printlin. Hello world out to the screen, and you
would've gotten it in the console.

So what's different here? What's different is we have public class hello world, and it
doesn't extend anything. It doesn't extend program. It doesn't extend console program.
There are no imports for the ACM libraries. We're not using any of the ACM stuff. So we
don't have a console program. We don't have a nice console that we write stuff out to that
displays in a nice little window. What we do have is something called the system output
console. If we want to put stuff on that, it looks real similar to what you had before. We
used printlin, which is why we made the method that you used called printlin to match
this. But we need to say system dot out dot prinlin and then the text we want to print out.

Again, here | have a main method. My main method can have whatever | want in it. This
IS just where execution starts. So if | compile this and run it — let me show you why. This
world is not all that cool. Here's hello world. It just ran. You're like, I don't see anything.
You don't get a cool window that comes up and is like, hello world. You have the system
console. The system console if you happen to be using a development environment like
Eclipse or something else, it's basically just a window in that development environment
that shows messages that you print out. If you happen to be in the bad old days that I
think | erased over here where you have command line text where you actually type stuff
in, the console would just be that same window where the text would appear where you
type stuff.

If you don't get it in a separate window, it's not that cool. A lot of times, this window's
close anyway. If you wanted to kick it up a notch, why use the console? Why not do
something graphical. So here's graphical hello world. What we want to do is create a
window that is going to have some title associated with it. We're going to put the text
hello world in that window. What do we need to do? Again, execution starts at main. We
need to create something called a J frame, which you never had to worry about before.
What's a J frame? It's actually a frame that's going to hold the window.

We're going to start running our application. It's going to create a little window for us that
we're going to display stuff in. What are we going to put in that window? We're going to
put a label. J labels you've seen before. This is just like you've seen. We're going to create
a J label that's called hello world, and we want this label to be center justified as opposed
to left justified or right justified.

So | need to say J label dot center to center justify it. If | don't give it a justification, it'll
by default by left justified and look kind of ugly because we want it center. Then | add
this label to my frame. So similar to the idea of having a canvas and adding stuff to the
canvas, it's exactly analogous. We want to make it just as easy. So when you saw
standard Java, all the same concepts would apply. Here, we're just adding the J label,
which as you know now, is a J component in the big Java hierarchy. J components can be
added to J frames.

So we have a J label that gets added to a J frame. | set the size for that J frame, which is
500 by 300. That tells me how big the window's going to be when it starts. Then there's
this other stuff that | need to do. You would think why do | need to do that? It doesn't
make any sense that | would not otherwise want to have it this way. Here's what | need to
do.

If someone clicks close on the window, | need to say, hey, if someone clicked that, then
you need to close yourself. Otherwise, the window goes away and the application keeps
running. It seems odd, but we need to have that there for this application to stop running.
Then we say window, | know | created you and everything. You need to make yourself
visible. Otherwise, no one will be able to see you.

You're like, why would I create a window that | wasn't going to make visible? Yeah,
that's why we use the ACM libraries. So we need to make sure that this guy's visibility's
true. If we run this, here's graphical hello. So after all this stuff, here's graphical hello.

Yeah, would you want all that explained to you so you can get hello world? You're like,
I'm writing a social network. | don't need to worry about hello world in the middle of my
screen. That's because you have the ACM libraries. So you're like, okay, let's kick it up
even one more notch. You're like, [inaudible] all this mouse stuff and interaction, right?
That should be something I get some benefit from having standard Java. So we'll have an
interactive version of hello.

Center the interactive version of hello. Now some of this stuff should begin to get a little
more repetitive in the sense that you have your main. You have your J frame. The frame
is called interactive hello. That's the title of that window. What we're going to add to this
J frame is a new class that we're going to create called a moving label. I'll show you what
a moving label down in just a second, but we need to set the size of the window, set
default close operation exit on close. Set visibility to true.

Basically all this does is create this window of a particular size. It's going to add this
thing called a moving label to it. Moving label's just another class I create. What's a
moving label? A moving label is a J component. It needs to be a J component because I'm
going to add it to a frame. To display something on a frame, | can only display
components on the frame. This is going to extend component.

It's going to implement our friend, mouse listener. It's going to listen for the mouse.
You're like, oh, | remember mouse listener. That where the mouse got clicked and
dragged. That stuff's exactly the same. So | have my constructor. What my constructor
has, it has some starting text for this label at its starting X and Y location. That should
look kind of familiar to you. Basically | just store off the text. | store it at X and Y. This
guy wants to listen for mouse events.

So it says add a mouse listener, and it needs to say if you get some mouse event, send
them to this. So this is a little bit different than you've written in your programs before

where you just said add mouse listener. You just had an open [inaudible]. That's because
we kind of took care of the rest of this stuff for you.

Here's where things get a little bit funky. The difference between this and thinking about
having some sort of label that you just display on a canvas, some text that just sits there,

is that this guy now has to worry about what's known as painting himself. That means it

needs to draw itself on the screen.

Well, when | had labels before, they just knew how to draw themselves. Yeah, that's
because we gave you a label that was a little bit smarter and knew that it was a label that
should draw itself. This guy needs to be told to draw himself. There's a method called
paint component that gets called whenever this guys gets displayed on the screen. There's
some other thread that's going to call it for you automatically. Here's the graphics context
in which your going to call yourself.

Within that graphics context, I'm going to draw some string. The actual method name and
everything is not important here. It just shows you that there is extra stuff you need to
worry about, which is why we didn't want to do all this stuff to begin with. This stuff
you've seen before. What happens if a mouse is clicked? | get the new XY location. |
repaint. What does repaint mean? It means redraw yourself. I'm going to redraw myself at
this new XY location. When | call repaint, someone comes along and says, hey, to repaint
this area, I'm going to call your paint component method so you can repaint yourself.

Whoa, this is really weird. I'm over here. | get a mouse click, and | know that | want to
redraw myself. But rather than telling myself directly to redraw myself, | go and tell the
system, | need to get repainted. Then the system says, that's the start of Jabba the Hutt
kind of sitting there fat and happy. Some day, if you actually — we won't get into it.

You go and say | need to repaint myself. It says, okay, you need to repaint yourself. Well,
when I'm ready for you to repaint yourself, I'll call your paint component method. Until
then, you don't repaint yourself. So it delays other stuff in the system to worry about, and
then oh, yeah. There was you. You asked to get repainted. I'll call your paint component.
You say, okay, well, now I'm going to draw myself at the new XY location.

So it kind of convoluted the whole notion of you're doing something here, and you're
asking someone else to do something for you. Then they're going to call you back to do
what you originally intended to do. Now it makes a little bit more sense after we talked
about threads and after you've seen all this stuff. Third day of class, not so hot.

So if we run this, this is called interactive below. Basically, what it does is it just brings
up our particular message, CS106A rocks in the middle of the screen. Now every time |
click the mouse button because this is the mouse click event over here. Every time | click
the mouse button, the XY location of the mouse becomes the new base point for the text
that gets drawn. So it just moves around the screen.

Any questions about that? So this is standard Java. You've seen all the concepts using the
ACM libraries. The notion of adding things, having mouse listeners. As a matter of fact,
the whole mouse listeners concept, we just took the standard Java ideas and used them
sort of in conjunction with the ACM libraries. But there's a lot of things in the ACM
libraries that just made it so much easier to, for example, to graphics contest entries or to
write a social network.

So you're welcome to continue to use the ACM libraries after this class. Some people
were wondering why we use these libraries, and this is the reason why. There's a whole
lot of stuff you'd have to worry about otherwise. Questions?

Student: [Inaudible].

Instructor (Mehran Sahami): You'd be using your favorite word processor, like
notepad. There's actually some places which I won't name, but it's actually reasonable
that some schools in your first programming class, what you do is they say, you need to
have notepad, or you need to have some text editor. Then we're going to do command
line stuff. You're going to type in name surfer, names dash data dot text to run your
program. Then everything is going to be [inaudible].

So one thing | want to leave you with now, in our final few moments together, is sort of a
notion — we're still going to meet next week, talk about life after this class, but if you
want to go on in terms of learning more about Java, especially standard Java, we sort of
just started things off by giving you this book, which talks all about the ACM libraries.
This, 1 think, is a great book to actually learn everything with and use the ACM libraries.
But if you want to go on, what are some other resources you can use?

Student: [Inaudible].

Instructor (Mehran Sahami): It's not pretty. If you go to the Java section of any
bookstore, just be prepared to stay a while. One book that I would recommend, not that |
get any kickbacks from these folks, called Learning Java. It's actually a pretty good time.
Some of the examples you actually saw here were based on this book. It's a little big.
That's why we don't use it as a textbook in this class. Will we break the 1,000-page mark.
It's so close. No, 950. Sorry, close.

There are some other books. Actually, the original specification of the Java programming
language. This is an older version of the book. This was when | was a wee tyke in the
days of yore and got the old version. | forget what version they're up to now. This was
second edition. I think now they're up to three or four. Something like that. The books are
a little bit bigger, but for a book that specifies the language, Java, it's actually very well-
written as a reference. So I'd recommend this as well.

If you're into oh, I want it all, Big Java. It's big. I think it might actually cross the 1,000
page — oh, yeah. It's like 1,200. If you really want to get hardcore and you're all about
web-based Java, Java Server Programming. Everything you would want and a lot of

things you don't want to know. Everything you want to know and more. That's just a
small set.

So these are just a few books I'd recommend if you want to go on beyond this class. But
you can go into any bookstore, and you get inundated with that kind of stuff. Now you
have a context for putting all the pieces together because you've seen all the things that
you actually need to know to be able to work with the huge set of tools that Java actually
has. Any questions about any of this stuff?

You're good to go? All right. I'll let you go a couple minutes early because most of the
time, | let you go a couple minutes late. Have a good weekend.

[End of Audio]

Duration: 45 minutes

