Skip to main content
original links is down, replaced with archive.org
Source Link

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: http://www.codemaestro.com/reviews/9https://web.archive.org/web/20110708173806/https://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: http://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: https://web.archive.org/web/20110708173806/https://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

C++ language highlighting
Source Link
M. Justin
  • 23.2k
  • 12
  • 133
  • 168
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 
Post Made Community Wiki by Deepeshkumar
deleted 10 characters in body
Source Link
Dave Jarvis
  • 31.3k
  • 43
  • 186
  • 326

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuckwtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: http://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: http://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

I was thinking about the horrible times I've spent in Numerical Analysis course.

And then I remember, there was this function circling around the 'net from the Quake Source code:

float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // wtf? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; } 

Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).

It should be usable and might even be faster, it's from one of the phenomenal id software's game!

It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:

I originally found it at: http://www.codemaestro.com/reviews/9

Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method

You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:

  • the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
  • the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
  • the * (float*) &i converts the value back to floating point.
  • the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.

The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.

This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.

added 1389 characters in body
Source Link
chakrit
  • 61.6k
  • 25
  • 138
  • 164
Loading
Source Link
chakrit
  • 61.6k
  • 25
  • 138
  • 164
Loading