Skip to main content
added 145 characters in body
Source Link
 zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002500000 
 zone_temp_1 Date/Time 15:36:20 73.500000 15:3638:40 73.500000 15:3739:00 73.400002 15:3739:20 73.400002 15:3739:40 73.400002 15:3840:00 73.400002 
 zone_temp_1 Date/Time 15:36:20 temp 73.500000 1415:2136:0040  73.4500000 1415:2237:00 74 73.400002 1415:2337:0020  73.2400002 1415:2437:3040 72 73.4400002 1415:2538:00 74 73.400002 1415:2538:3020 71 73.2400002 15:39:20 73.500000 15:39:40 73.500000 15:40:00 73.400002 
 0 zone_temp_1 Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:3638:2040 NaN 73.500000 15:3638:4020 NaN 73.500000 15:3739:00 NaN 73.400002 15:3739:20 NaN 73.400002 15:3739:40 NaN 73.400002 15:3840:00 NaN 73.400002 
 zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002 
 zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 
Date/Time temp 14:21:00 73.4 14:22:00 74 14:23:00 73.2 14:24:30 72.4 14:25:00 74 14:25:30 71.2 
 0 zone_temp_1 Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002 
 zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.500000 
 zone_temp_1 Date/Time 15:38:40 73.500000 15:39:00 73.400002 15:39:20 73.400002 15:39:40 73.400002 15:40:00 73.400002 
 zone_temp_1 Date/Time 15:36:20  73.500000 15:36:40  73.500000 15:37:00  73.400002 15:37:20  73.400002 15:37:40  73.400002 15:38:00  73.400002 15:38:20  73.400002 15:39:20 73.500000 15:39:40 73.500000 15:40:00 73.400002 
 0 zone_temp_1 Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:38:40 NaN 73.500000 15:38:20 NaN 73.500000 15:39:00 NaN 73.400002 15:39:20 NaN 73.400002 15:39:40 NaN 73.400002 15:40:00 NaN 73.400002 
added 128 characters in body
Source Link
BENY
  • 324k
  • 22
  • 176
  • 250
  zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002

  zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002

  0 zone_temp_1 Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002 

Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002

 zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002

 zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002

 0 zone_temp_1 

Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002

  zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002 
  zone_temp_1 Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 
  0 zone_temp_1 Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002 
added 485 characters in body
Source Link

Two Dataframes:

df1:

Date/Time temp 14:21:00  73.4 14:22:00 74 14:23:00 73.2zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002

df2:

Date/Time temp 14:24:30 72.4 14:25:00 74 14:25:30  71.2zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002

I would like the concatenation to look like this:

Date/Time temp 14:21:00 73.4 14:22:00 74 14:23:00 73.2 14:24:30 72.4 14:25:00 74 14:25:30 71.2 

Using pandas.concat as such df1= pd.concat([df1, df2])"df1= pd.concat([df1, df2])" leaves me with this

Date/Time 0  temp 14:21:00 73.4  NaN 14:22:00 74 NaN 14:23:00 73.2 NaN 14:24:30 NaN 72.4 14:25:00 NaN 74 14:25:30 NaN 0 71.2zone_temp_1 

Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002

This was marked as a repeat question but I have done my due diligence and can not find any solution.

Two Dataframes:

df1:

Date/Time temp 14:21:00  73.4 14:22:00 74 14:23:00 73.2 

df2:

Date/Time temp 14:24:30 72.4 14:25:00 74 14:25:30  71.2 

I would like the concatenation to look like this:

Date/Time temp 14:21:00 73.4 14:22:00 74 14:23:00 73.2 14:24:30 72.4 14:25:00 74 14:25:30 71.2 

Using pandas.concat as such df1= pd.concat([df1, df2]) leaves me with this

Date/Time 0  temp 14:21:00 73.4  NaN 14:22:00 74 NaN 14:23:00 73.2 NaN 14:24:30 NaN 72.4 14:25:00 NaN 74 14:25:30 NaN  71.2 

This was marked as a repeat question but I have done my due diligence and can not find any solution.

Two Dataframes:

df1:

 zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002 15:38:20 73.400002

df2:

 zone_temp_1 

Date/Time 15:36:20 73.500000 15:36:40 73.500000 15:37:00 73.400002 15:37:20 73.400002 15:37:40 73.400002 15:38:00 73.400002

I would like the concatenation to look like this:

Date/Time temp 14:21:00 73.4 14:22:00 74 14:23:00 73.2 14:24:30 72.4 14:25:00 74 14:25:30 71.2 

Using pandas.concat as such "df1= pd.concat([df1, df2])" leaves me with this

 0 zone_temp_1 

Date/Time 15:36:20 73.500000 NaN 15:36:40 73.500000 NaN 15:37:00 73.400002 NaN 15:37:20 73.400002 NaN 15:37:40 73.400002 NaN 15:38:00 73.400002 NaN 15:38:20 73.400002 NaN 15:36:20 NaN 73.500000 15:36:40 NaN 73.500000 15:37:00 NaN 73.400002 15:37:20 NaN 73.400002 15:37:40 NaN 73.400002 15:38:00 NaN 73.400002

This was marked as a repeat question but I have done my due diligence and can not find any solution.

added 100 characters in body
Source Link
Loading
Post Closed as "Duplicate" by BENY dataframe
added 98 characters in body
Source Link
BENY
  • 324k
  • 22
  • 176
  • 250
Loading
Source Link
Loading