Is this a bug or a feature?
import numpy as np a=b=c=0 print 'a=',a print 'b=',b print 'c=',c a = 5 print 'a=',a print 'b=',b print 'c=',c b = 3 print 'a=',a print 'b=',b print 'c=',c x=y=z=np.zeros(5) print 'x=',x print 'y=',y print 'z=',z x[2]= 10 print 'x=',x print 'y=',y print 'z=',z y[3]= 20 print 'x=',x print 'y=',y print 'z=',z The output of the code shows me that the numpy initializations are clones of each other while python tends to treat them as independent variable.
a= 0 b= 0 c= 0 a= 5 b= 0 c= 0 a= 5 b= 3 c= 0 x= [ 0. 0. 0. 0. 0.] y= [ 0. 0. 0. 0. 0.] z= [ 0. 0. 0. 0. 0.] x= [ 0. 0. 10. 0. 0.] y= [ 0. 0. 10. 0. 0.] z= [ 0. 0. 10. 0. 0.] x= [ 0. 0. 10. 20. 0.] y= [ 0. 0. 10. 20. 0.] z= [ 0. 0. 10. 20. 0.] I hope the problem is clear. Is this a bug or a feature in numpy?
Regards