What we'd really like to do is use np.in1d... except that np.in1d only works with 1-dimensional arrays. Our arrays are multi-dimensional. However, we can view the arrays as a 1-dimensional array of strings:
arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
For example,
In [15]: arr = np.array([[1, 2], [2, 3], [1, 3]]) In [16]: arr = arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1]))) In [30]: arr.dtype Out[30]: dtype('V16') In [31]: arr.shape Out[31]: (3, 1) In [37]: arr Out[37]: array([[b'\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00'], [b'\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00'], [b'\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00']], dtype='|V16')
This makes each row of arr a string. Now it is just a matter of hooking this up to np.in1d:
import numpy as np def asvoid(arr): """ Based on http://stackoverflow.com/a/16973510/190597 (Jaime, 2013-06) View the array as dtype np.void (bytes). The items along the last axis are viewed as one value. This allows comparisons to be performed on the entire row. """ arr = np.ascontiguousarray(arr) if np.issubdtype(arr.dtype, np.floating): """ Care needs to be taken here since np.array([-0.]).view(np.void) != np.array([0.]).view(np.void) Adding 0. converts -0. to 0. """ arr += 0. return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1]))) def inNd(a, b, assume_unique=False): a = asvoid(a) b = asvoid(b) return np.in1d(a, b, assume_unique) tests = [ (np.array([[1, 2], [2, 3], [1, 3]]), np.array([[2, 2], [3, 3], [4, 4]]), np.array([False, False, False])), (np.array([[1, 2], [2, 2], [1, 3]]), np.array([[2, 2], [3, 3], [4, 4]]), np.array([True, False, False])), (np.array([[1, 2], [3, 4], [5, 6]]), np.array([[1, 2], [3, 4], [7, 8]]), np.array([True, True, False])), (np.array([[1, 2], [5, 6], [3, 4]]), np.array([[1, 2], [5, 6], [7, 8]]), np.array([True, True, False])), (np.array([[-0.5, 2.5, -2, 100, 2], [5, 6, 7, 8, 9], [3, 4, 5, 6, 7]]), np.array([[1.0, 2, 3, 4, 5], [5, 6, 7, 8, 9], [-0.5, 2.5, -2, 100, 2]]), np.array([False, True, True])) ] for a, b, answer in tests: result = inNd(b, a) try: assert np.all(answer == result) except AssertionError: print('''\ a: {a} b: {b} answer: {answer} result: {result}'''.format(**locals())) raise else: print('Success!')
yields
Success!
aandb?