Here is a version of jfs' solution, which also delivers the position of the largest rectangle:
from collections import namedtuple from operator import mul Info = namedtuple('Info', 'start height') def max_rect(mat, value=0): """returns (height, width, left_column, bottom_row) of the largest rectangle containing all `value`'s. Example: [[0, 0, 0, 0, 0, 0, 0, 0, 3, 2], [0, 4, 0, 2, 4, 0, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0, 3, 0, 0, 4], [0, 0, 0, 0, 4, 2, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 0, 0], [4, 3, 0, 0, 1, 2, 0, 0, 0, 0], [3, 0, 0, 0, 2, 0, 0, 0, 0, 4], [0, 0, 0, 1, 0, 3, 2, 4, 3, 2], [0, 3, 0, 0, 0, 2, 0, 1, 0, 0]] gives: (3, 4, 6, 5) """ it = iter(mat) hist = [(el==value) for el in next(it, [])] max_rect = max_rectangle_size(hist) + (0,) for irow,row in enumerate(it): hist = [(1+h) if el == value else 0 for h, el in zip(hist, row)] max_rect = max(max_rect, max_rectangle_size(hist) + (irow+1,), key=area) # irow+1, because we already used one row for initializing max_rect return max_rect def max_rectangle_size(histogram): stack = [] top = lambda: stack[-1] max_size = (0, 0, 0) # height, width and start position of the largest rectangle pos = 0 # current position in the histogram for pos, height in enumerate(histogram): start = pos # position where rectangle starts while True: if not stack or height > top().height: stack.append(Info(start, height)) # push elif stack and height < top().height: max_size = max(max_size, (top().height, (pos - top().start), top().start), key=area) start, _ = stack.pop() continue break # height == top().height goes here pos += 1 for start, height in stack: max_size = max(max_size, (height, (pos - start), start), key=area) return max_size def area(size): return size[0] * size[1]
O(n).