The issue I encountered was in trying to import globals between modules, causing the ProcessPool() line to get evaluated multiple times.
globals.py
from processing import Manager, Lock from pathos.multiprocessing import ProcessPool from pathos.threading import ThreadPool class SingletonMeta(type): def __new__(cls, name, bases, dict): dict['__deepcopy__'] = dict['__copy__'] = lambda self, *args: self return super(SingletonMeta, cls).__new__(cls, name, bases, dict) def __init__(cls, name, bases, dict): super(SingletonMeta, cls).__init__(name, bases, dict) cls.instance = None def __call__(cls,*args,**kw): if cls.instance is None: cls.instance = super(SingletonMeta, cls).__call__(*args, **kw) return cls.instance def __deepcopy__(self, item): return item.__class__.instance class Globals(object): __metaclass__ = SingletonMeta """ This class is a workaround to the bug: AssertionError: daemonic processes are not allowed to have children The root cause is that importing this file from different modules causes this file to be reevalutated each time, thus ProcessPool() gets reexecuted inside that child thread, thus causing the daemonic processes bug """ def __init__(self): print "%s::__init__()" % (self.__class__.__name__) self.shared_manager = Manager() self.shared_process_pool = ProcessPool() self.shared_thread_pool = ThreadPool() self.shared_lock = Lock() # BUG: Windows: global name 'lock' is not defined | doesn't affect cygwin
Then import safely from elsewhere in your code
from globals import Globals Globals().shared_manager Globals().shared_process_pool Globals().shared_thread_pool Globals().shared_lock
I have written a more expanded wrapper class around pathos.multiprocessing here:
As a side note, if your usecase just requires async multiprocess map as a performance optimization, then joblib will manage all your process pools behind the scenes and allow this very simple syntax:
squares = Parallel(-1)( delayed(lambda num: num**2)(x) for x in range(100) )
I want a pool to be able to call a function that has another pool insideand how that interfere with the fact that the workers are daemonized.AssertionError: daemonic processes are not allowed to have childrenfrom multiprocessing import Pool, usefrom concurrent.futures import ProcessPoolExecutor as Pool