I have the following dataset:
I want to calculate impute the NA in the n_j column in the second row with the formula n_j - (d_j+c_j).
To create the data:
df = structure(list(time_intervals = structure(1:8, levels = c("[0,12)", "[12,24)", "[24,36)", "[36,48)", "[48,60)", "[60,72)", "[72,84)", "[84,96]"), class = "factor"), d_j = c(16L, 10L, 1L, 3L, 2L, 2L, 0L, 2L), c_j = c(4L, 4L, 0L, 1L, 2L, 0L, 1L, 0L), n_j = c(48L, NA, NA, NA, NA, NA, NA, NA)), row.names = c(NA, -8L), class = c("tbl_df", "tbl", "data.frame")) I managed to do this with a for loop:
for (i in 1:nrow(df)) { df <- df |> mutate( n_j = ifelse(is.na(n_j), lag(n_j)- (lag(d_j)+lag(c_j)), n_j) ) } Is there a way to do this using purrr::map or other Tidyverse functions?
