$^1$ (Before factor rotation) variances of factors (pr. components) are the eigenvalues of the correlation/covariance matrix of the data if the FA is PCA method; variances of factors are the eigenvalues of the reduced correlation/covariance matrix with final communalities on the diagonal, if the FA is PAF method of extraction; variances of factors do not correspond to eigenvalues of correlation/covariance matrix in other FA methods such as ML, ULS, GLS (see). In all cases, variances of orthogonal factors are the SS of the extracted/rotated - final - loadings.
replaced http://stats.stackexchange.com/ with https://stats.stackexchange.com/