model_glmm_Eyed <- glmmTMB(Eyed ~ Genetic + (1 | FemaleID), data = df, family = beta_family()) Conditional model: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.4800 0.1991 7.432 1.07e-13 *** GeneticW 0.3309 0.2936 1.127 0.260 GeneticYY -0.4053 0.2472 -1.640 0.101 emmeans(model_glmm_Eyed, pairwise ~ Genetic)
model_glmm_Eyed <- glmmTMB(Eyed ~ Genetic + (1 | FemaleID), data = df, family = beta_family()) Conditional model: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.4800 0.1991 7.432 1.07e-13 *** GeneticW 0.3309 0.2936 1.127 0.260 GeneticYY -0.4053 0.2472 -1.640 0.101 $emmeans Genetic emmean SE df asymp.LCL asymp.UCL F1 1.48 0.199 Inf 1.090 1.87 W 1.81 0.269 Inf 1.284 2.34 YY 1.07 0.203 Inf 0.676 1.47 Results are given on the logit (not the response) scale. Confidence level used: 0.95 $contrasts contrast estimate SE df z.ratio p.value F1 - W -0.331 0.294 Inf -1.127 0.4972 F1 - YY 0.405 0.247 Inf 1.640 0.2290 W - YY 0.736 0.299 Inf 2.460 0.0370 Results are given on the log odds ratio (not the response) scale. P value adjustment: tukey method for comparing a family of 3 estimates emmeans(model_glmm_Eyed, pairwise ~ Genetic) $emmeans Genetic emmean SE df asymp.LCL asymp.UCL F1 1.48 0.199 Inf 1.090 1.87 W 1.81 0.269 Inf 1.284 2.34 YY 1.07 0.203 Inf 0.676 1.47 Results are given on the logit (not the response) scale. Confidence level used: 0.95 $contrasts contrast estimate SE df z.ratio p.value F1 - W -0.331 0.294 Inf -1.127 0.4972 F1 - YY 0.405 0.247 Inf 1.640 0.2290 W - YY 0.736 0.299 Inf 2.460 0.0370 Results are given on the log odds ratio (not the response) scale. P value adjustment: tukey method for comparing a family of 3 estimates