I have a dataframe that contains the percent of time (percent) animals spent within different temperature bins (bin) during summer and winter (period). The data was generated using satellite transmitters with a temperature sensor and the percentages represent a daily summary statistic, i.e. for each day the summary was created the sum of the percentages across all 12 bins results in 100%. There is no actual temperature data (e.g. degrees Celsius) but just the daily summary of time spent in each bin across one day. Summaries were not created for all days. There are several daily summaries per animal, and there are multiple animals in the dataset.
I want to compare statistically if there is a shift of the percent of time animals spent withing higher/lower temperature bins between the seasons. I don't want to run a statistic that tells me if there is a change in % within the bins between seasons, but be able to make an overall conclusion if there is a shift between seasons. As I visualised my data as a bi-histogram I initially veered towards a chi-square test. However, given the many zeros in my df this seems the wrong way to go.
Here is a snipped of my data to show the datastructure and I am working in R (version: 4.4.1.). Within the original data set there are 9 unique animalnrs and all of those except for one have data during summer and winter.
> df <-dput(test2) structure(list(animalnr = c("183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "183623", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368", "200368"), period = c("winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "summer", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter", "winter" ), bin = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L), levels = c("Bin1", "Bin2", "Bin3", "Bin4", "Bin5", "Bin6", "Bin7", "Bin8", "Bin9", "Bin10", "Bin11", "Bin12"), class = "factor"), percent = c(0, 0, 0, 0, 0, 73.3, 26.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 61.2, 38.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52.1, 47.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 65.1, 34.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 74.3, 25.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55.6, 44.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.3, 65.4, 32.3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60.6, 35.6, 3.8, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 92.7, 6.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 82, 17.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72.2, 24.6, 3.1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 49.9, 31.7, 15.5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4.8, 58.6, 36.3, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 36.3, 62.5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 57.6, 41.8, 0.7, 0, 0, 0, 0, 0, 0, 0, 4.6, 37.4, 48.9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 1, 61.9, 35.7, 1.2, 0, 0, 0, 0, 0, 0, 0, 0, 5.4, 73.1, 18.3, 3.2, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 9, 28.1, 62.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.8, 36.5, 58.5, 0.2, 0, 0, 0, 0, 0, 0, 0, 0.7, 11.3, 36.2, 42.5, 9.3, 0, 0, 0, 0, 0, 0, 0, 0.3, 10.2, 30.9, 37.2, 20.4, 0.9, 0, 0, 0, 0, 0, 0, 0, 4.5, 35.4, 57.6, 2.5, 0, 0, 0, 0, 0, 0, 0, 0.9, 6, 24.8, 38.1, 30.2, 0, 0, 0, 0, 0, 0, 0, 0.2, 2.2, 12.3, 29.4, 55.9, 0, 0, 0, 0, 0, 0, 0, 0, 2, 9.3, 24, 64.4, 0.3, 0, 0, 0, 0, 0, 0, 0, 0.2, 9.6, 25.7, 58.5, 6, 0, 0, 0, 0, 0, 0.2, 0.2, 0.7, 14.7, 33.8, 47.3, 3.2, 0, 0, 0, 0, 0, 0, 0.2, 2.8, 12.6, 51, 32.6, 0.8, 0, 0, 0, 0, 0, 0, 0.7, 6.8, 20.6, 29.9, 42.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.4, 4.7, 15.9, 51.9, 27.1, 0, 0, 0, 0, 0, 0, 0, 0.3, 2.1, 11.8, 75.2, 10.6, 0, 0, 0, 0, 0, 0, 0, 0, 0.4, 0.8, 97, 1.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 52.7, 46.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96.2, 3.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97.7, 2.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.6, 92.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 3.7, 95.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21.1, 78.9, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 1.9, 8.7, 18, 53.9, 17.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.1, 68.9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5.3, 64.2, 29.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.1, 95.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.6, 46.5, 51.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39.7, 60.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55.4, 44.6, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 3.3, 71, 25.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 28.4, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.3, 91.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.9, 69.7, 22.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4, 99.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.6, 31.5, 66.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.1, 95.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 85, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52.4, 47.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 38.6, 61.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23.9, 76.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.8, 96.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 98.5, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99.6, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99.6, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99.6, 0.4, 0, 0, 0, 0, 0, 0, 0, 95.5, 1.5, 1.1, 1.5, 0.4, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0)), row.names = c(NA, 876L), class = "data.frame")
binandseasonas predictors. That would require knowing more details about how the percentages of time in each temperature bin were determined (e.g., the duration of observations and the precision of the time measurement) and whether these observations are on completely different animals or whether there were multiple observations on the same animals over time. Please edit the question to provide that information; comments are easy to overlook and can be deleted. $\endgroup$animalnr, and one of those has no observations for "summer." Are these all the data, or just a snippet to illustrate the nature of the data? If this is just a snippet, how many unique animals are there overall, and are there data on each of them for both "summer" and "winter"? $\endgroup$