So, you need to use a completely different command, \difc, just to typeset this? And this package uses dots of all things as argument delimiters (yes, I know many people feel the same way about g-type arguments, but I respectfully disagree)? This is a classical example of why I prefer keyval syntax, such as the following (I used my own package to make this, but this should be taken as an encouragement to the authors of diffcoeff, derivative, and other packages to embrace keyval syntax):
\documentclass{article} \usepackage{semantex} \NewVariableClass\DifferentialOperator[ bool provide=in pars, define keys={ {in pars}{ use par=false, bool set true=in pars, set arg dots={\dotsc}, set arg sep={,}, }, {not in pars}{ use par=never, bool set false=in pars, set arg dots={\dotsm}, set arg sep={\,}, }, }, not in pars, define keys[1]={ {pow}{upper={#1}}, }, prepend keys[1]={ {arg}{ bool if TF={in pars} { define arg keys[1]={ {default}{ sep={####1}, } }, }{ return, define arg keys[1]={ {default}{ set arg keys x={ other sep={% \SemantexDataGetExpNot{arg sep}% \SemantexDataGetExpNot{symbol}% }{% \SemantexExpNot{####1}% } }, } }, }, } }, ] \NewObject\DifferentialOperator\dl{d} \NewObject\DifferentialOperator\dlpartial{\partial} \begin{document} \begin{gather*} \dl = \dl{x} = \dl[pow=4] = \dl{x,y,z} = \dl[pow=4]{x,y,z} = \dl[u]{x,y,z} = \dl[u,pow=4]{x,y,...,z} \\ \dlpartial = \dlpartial{x} = \dlpartial[pow=4] = \dlpartial{x,y,z} = \dlpartial[pow=4]{x,y,z} = \dlpartial[u]{x,y,z} = \dlpartial[u,pow=4]{x,y,...,z} \\ \dl[in pars] = \dl[in pars]{x} = \dl[in pars,pow=4] = \dl[in pars]{x,y,z} = \dl[in pars,pow=4]{x,y,z} = \dl[u,in pars]{x,y,z} = \dl[u,in pars,pow=4]{x,y,...,z} \\ \SetupObject\dl{in pars} \dl = \dl{x} = \dl[pow=4] = \dl{x,y,z} = \dl[pow=4]{x,y,z} = \dl[u]{x,y,z} = \dl[u,pow=4]{x,y,...,z} \end{gather*} \end{document}
