@@ -1345,10 +1345,9 @@ def test_numeric_literal(scalars_dfs):
13451345 scalars_df , _ = scalars_dfs
13461346 col_name = "numeric_col"
13471347 assert scalars_df [col_name ].dtype == pd .ArrowDtype (pa .decimal128 (38 , 9 ))
1348- bf_result = scalars_df [col_name ] - scalars_df [ col_name ]. median ()
1348+ bf_result = scalars_df [col_name ] + 42
13491349 assert bf_result .size == scalars_df [col_name ].size
1350- # TODO(b/323387826): The precision increased by 1 unexpectedly.
1351- # assert bf_result.dtype == pd.ArrowDtype(pa.decimal128(38, 9))
1350+ assert bf_result .dtype == pd .ArrowDtype (pa .decimal128 (38 , 9 ))
13521351
13531352
13541353def test_repr (scalars_dfs ):
@@ -1523,12 +1522,32 @@ def test_groupby_mean(scalars_dfs):
15231522 )
15241523
15251524
1526- def test_groupby_median (scalars_dfs ):
1525+ def test_groupby_median_exact (scalars_dfs ):
15271526 scalars_df , scalars_pandas_df = scalars_dfs
15281527 col_name = "int64_too"
1529- bf_series = (
1528+ bf_result = (
15301529 scalars_df [col_name ].groupby (scalars_df ["string_col" ], dropna = False ).median ()
15311530 )
1531+ pd_result = (
1532+ scalars_pandas_df [col_name ]
1533+ .groupby (scalars_pandas_df ["string_col" ], dropna = False )
1534+ .median ()
1535+ )
1536+
1537+ assert_series_equal (
1538+ pd_result ,
1539+ bf_result .to_pandas (),
1540+ )
1541+
1542+
1543+ def test_groupby_median_inexact (scalars_dfs ):
1544+ scalars_df , scalars_pandas_df = scalars_dfs
1545+ col_name = "int64_too"
1546+ bf_series = (
1547+ scalars_df [col_name ]
1548+ .groupby (scalars_df ["string_col" ], dropna = False )
1549+ .median (exact = False )
1550+ )
15321551 pd_max = (
15331552 scalars_pandas_df [col_name ]
15341553 .groupby (scalars_pandas_df ["string_col" ], dropna = False )
0 commit comments