

λ-Calculus:
Then & Now

Dana S. Scott

University Professor Emeritus
Carnegie Mellon University

Visiting Scholar
University of California, Berkeley

dana.scott@cs.cmu.edu

TURING CENTENNIAL CELEBRATION
Princeton University, May 10-12, 2012

ACM TURING CENTENARY CELEBRATION

San Francisco, June 15-16, 2012

UC BERKELEY LOGIC COLLOQUIUM
Berkeley, August 24, 2012

Notes derived from the slides presented at the conferences.
A brief amount of text has been added for continuity.

The author would be happy to hear reactions and suggestions.
Version of 17 November 2013

1

Symbols of Princeton

WARNING: We cannot give here a complete history of Mathematical
Logic and related areas. The present report may even have too much
detail. But it is hoped readers might be encouraged to look further.

2

 Traditional From the Graduate Alumni
 (to encourage ecology)

The λ-calculus was begun
at Princeton, and the purpose of this
report is to show how it has been

recycled every decade after the 1930s
in new and useful ways.

1870s
Begriffsschrift Frege (1879)

1880s
What are numbers? Dedekind (1888)
Number-theoretic axioms Peano (1889)

1890s
Vorlesungen über die Algebra der Logik Schröder (1890–1905)
Grundgesetze der Arithmetik Frege (1893-1903)
Formulario Mathematico Peano (1895-1901)
Grundlagen der Geometrie Hilbert (1899)

1900s
Diophantine problem Hilbert (1900)
Russell's Paradox Russell (1901)
Principles of Mathematics Russell (1903)
Richard’s Paradox Richard (1905)
Theory of Types Russell (1908)

1910s
Principia Mathematica Whitehead-Russell (1910-12-13)
Calculus of relatives Löwenheim (1915)

WW I ––
1920s
Löwenheim-Skolem Theorem Skolem (1920)
Propositional calculus completeness Post (1921)
Monadic predicate calculus decidable Behmann (1922)
Abstract proof rules Hertz (1922)
Primitive recursive arithmetic Skolem (1923)
Combinators Schönfinkel (1924)
Function-based set theory von Neumann (1925)
“Conceptual” undecidability Finsler (1926)
Epsilon operator Hilbert-Bernays (1927)
Combinators (again) Curry (1927)
Ackermann function Ackermann (1928)
Entscheidungsproblem Hilbert-Ackermann (1928)
Abriss der Logistik & simple type theory Carnap (1929)

It was very reasonable for Hilbert and Ackermann to emphasize
the Decision Problem, as special cases had been solved.

3

A Quick Look Back to Beginnings

http://en.wikipedia.org/wiki/Grundlagen_der_Geometrie
http://en.wikipedia.org/wiki/Grundlagen_der_Geometrie

4

Church vs. Turing

Alonzo Church
Born: 14 June 1903 in Washington, D.C., USA.
Died: 11 Aug 1995 in Hudson, Ohio, USA.
Ph.D.: Princeton University, 1927, USA

Alan Turing
Born: 23 June 1912, Maida Vale, London, UK.
Died: 7 June 1954, Wilmslow, Cheshire, UK.
Ph.D.: Princeton University, 1938, USA.

Alonzo Church, “An Unsolvable Problem in Elementary Number Theory,”
American J. of Mathematics, vol. 5 (1936), pp. 345-363.

Alonzo Church, “A Note on the Entscheidungsproblem,” J. of Symbolic
Logic, vol. 1 (1936) pp. 40-41. Correction: ibid, pp. 101-102.

Alan Turing,“On Computable Numbers with an Application to the
Entscheidungsproblem,” Proc. of the London Math. Soc., vol. 42 (1936), pp.
230-267. Correction: vol. 43 (1937), pp. 544-546.

Alan Turing,“Computability and λ-definability,” J. Symbolic Logic, vol. 2
(1937), pp. 153-163.

The work of Church and Turing in 1936 was
done independently.

http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Wilmslow

Three Pioneers

5

Haskell Brooks Curry

Born: 12 Sept 1900 in Millis, MA, USA.
Died: 1 Sept 1982 in State College, PA, USA.
Ph.D.: Göttingen Universität, 1930, Germany.
Thesis: Grundlagen der kombinatorischen Logik

Stephen Cole Kleene

Born: 5 Jan 1909 in Hartford, CN, USA.
Died: 25 Jan 1994 in Madison, WI, USA.
Ph.D.: Princeton University, 1934, USA.
Thesis: A Theory of Positive Integers in Formal Logic

Born: 6 Dec 1907 in Jacksonville, FL, USA.
Died: 5 Sept 1989 in Madison, WI, USA.
Ph.D.: Princeton University, 1934, USA.
Thesis: A Mathematical Logic without Variables

J. Barkley Rosser

It seems, sadly, that Alan Turing never had a chance to
meet these people or Kurt Gödel.

A Very Busy Decade
1930s
Combinatory logic Curry (1930-32)
Herbrand’s Theorem Herbrand (1930)
Completeness proof Gödel (1930)
Partial consistency proof Herbrand (1931)
Incompleteness Gödel (1931)
Untyped λ-calculus Church (1932-33-41)
Studies of primitive recursion Péter (1932-36)
Non-standard models Skolem (1933)
Functionality in Combinatory Logic Curry (1934)
Grundlagen der Mathematik Hilbert-Bernays (1934-39)
Natural deduction Gentzen (1934)
Number-theoretic consistency & ε0 -induction Gentzen (1934)
Inconsistency of Church’s System Kleene-Rosser (1936)
Confluence theorem Church-Rosser (1936)
Finite combinatory processes Post (1936)
Turing machines Turing (1936-37)
Recursive undecidability Church-Turing (1936)
General recursive functions Kleene (1936)
Further completeness proofs Maltsev (1936)
Improving incompleteness theorems Rosser (1936)
Fixed-point combinator Turing (1937)
Computability and λ-definability Turing (1937)

Starting out with Gödel and ending up with Turing,
it would take a long time to comprehend

and apply all the developments
in this period.

6

What is the λ-Calculus?
The calculus gives rules for the explicit definition
of functions; however, the type-free version also

permits recursion and self-replication.

α-conversion
 λX.[...X...] = λY.[...Y...]

β-conversion
! (λX.[...X...])(T) = [...T...]

η-conversion
 λX.F(X) = F

7

The names of the rules are due to Curry.
The last rule fails in many interpretations, and
special efforts are needed to make it valid.

Church’s original system (1932) also had rules
for logic, but that was the system Kleene-Rosser

(1936) proved inconsistent!

8

Does λ-Calculus have Models?

(n,m) = 2n(2m+1)

set(0) = ∅

set((n,m)) = set(n) ∪ { m }

X* = { n | set(n) ⊆ X }

Application

! F(X) = { m | ∃n ∈ X*.(n,m) ∈

F }

Abstraction

 λX.[...X...] =

! ! {0}∪{ (n,m) | m ∈ [... set(n)...] }

Every set of integers can be used as an
enumeration operator. The operator is computable

if the set is r.e. Many compound contexts do
define enumeration operators.

Yes! There is a calculus for enumeration operators!
First we need some simple definitions on

integers and sets of integers:

9

The Connection to Computability

 0 = λF.λX.X
n+1 = λF.λX.F(n(F)(X))
n+m = λF.λX.n(F)(m(F)(X))
n×m = λF.n(m(F))
 mn = n(m)

n-1 = [a little harder]

Kleene and Turing independently proved
this in different ways.

In the model, G denotes an r.e. set.

Theorem. For every partial recursive function g(n),
there is a constant λ-term G such that

G(n) = g(n) , for all n.

Y = λF.(λX.F(X(X)))(λX.F(X(X)))
Y(F) = F(Y(F))

Fixed-Point Combinator

Church Numerals

10

Some λ-Definitions

 test = λN.λU.λV.snd(N(shft(λX.X))(pair(V)(U)))

mult = λN.λM.λF.N(M(F))
 fact = λN.test(N)(1)(mult(N)(fact(pred(N))))
 fact = Y(λF.λN.test(N)(1)(mult(N)(F(pred(N)))))

 pair = λX.λY.λF. F(X)(Y)

 fst = λP.P(λX.λY. X)

 snd = λP.P(λX.λY. Y)

succ = λN.λF.λX.F(N(F)(X))
 shft = λS.λP. pair(S(fst(P)))(fst(P))

pred = λN. snd(N(shft(succ))(pair(0)(0)))

Kleene’s “trick” here is to introduce pairs as a data

structure, and then apply iteration to get

a sequence of pairs.

The factorial function must be the most overdefined
function in the history of mankind!

11

Turing’s Only Student

Born: 23 September 1919, Peppard, Oxon., UK.
Died: 20 November 1995, Oxford, UK.
Ph.D.: Cambridge, 1953.
Thesis: On axiomatic systems in Mathematics
 and theories in Physics.
Supervisor: Alan Turing.
Reader: Oxford University, Wolfson College,
 1969-1986.
Students: 26 and 126 descendants.

Robin Oliver Gandy

It is interesting to note that both the teams of

Myhill and Shepherdson
and, later,

Friedberg and Rogers

defined enumeration operators without seeing they

had models for the λ-calculus.

Another pioneer, Gandy, later became a key contributor

to the development of Recursive Function Theory.

http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Wilmslow

12

Church-Turing Thesis
accepted with the help of Kleene

after Turing explained his machines.

Effectively computable functions
of natural numbers can be identified with

those definable by:

• λ-calculus
• Herbrand-Gödel equations
• Partial-recursive schemata

• Turing-Post machine programs

If Gödel had stayed in Princeton, and

If Church and Kleene had argued better
for data structures in the λ-calculus,

Then surely Gödel would have accepted
λ-calculus as a foundation much earlier.

Note that Kleene proved the equivalence with

Herbrand-Gödel computability before Turing’s work.

13

Kleene’s Complaint

I myself, perhaps unduly influenced by rather chilly
receptions from audiences around 1933-35 to disquisitions
on λ-definability, chose, after general recursiveness had
appeared, to put my work in that format. I did later publish
one paper 1962 on λ-definability in higher recursion
theory.

I thought general recursiveness came the closest to
traditional mathematics. It spoke in a language familiar
to mathematicians, extending the theory of special
recursiveness, which derived from formulations of
Dedekind and Peano in the mainstream of mathematics.

I cannot complain about my audiences after 1935,
although whether the improvement came from switching I
do not know. In retrospect, I now feel it was too bad I did
not keep active in λ-definability as well. So I am glad that
interest in λ-definability has revived, as illustrated by Dana
Scott’s 1963 communication.

Were the truth to be known, Kleene translated much
of what he had done in λ-calculus into working with

integers. Indeed, the application operation {e}(n)

defines a partial combinatory algebra with many
properties similar to the work of Curry and Rosser.

After the solution of Hilbert’s 10th Problem,
the applicability of this theory

became even easier.

14

Church’s Solution
Theorem. Only a finite number of axioms are

needed to define a non-recursive set of integers.

R.M.Robinson’s Arithmetic
(1) ∀ x ∀ y [x = y ⟺ Sx = Sy]

(2) ∀ x [x = 0 ⟺ ¬∃y. x = Sy]

(3) ∀ x ∀ y [(x + 0) = x & (x + Sy) = S(x + y)]

(4) ∀ x ∀ y [(x × 0) = 0 & (x × Sy) = ((x × y) + x)]

What is the Entscheidungsproblem?
To determine whether a formula of
the first-order predicate calculus

is provable or not.

15

Turing’s Solution
Theorem. Only a finite number of axioms are

needed to define the Universal Turing Machine.

Minskyizing the UTS
Starting with Claude Shannon in 1956, many people —

often in competition with Marvin Minsky — proposed very
small UTMs (but their operation requires extensive coding

of patterns). But, axiomatically, they do not require
as many axioms as Turing did.

Post-Markov’s Solution
The basic idea of Post (1943) was that a logistic system

is simply a set of rules specifying how to change
one string of symbols (antecedent) into another string

of symbols (consequent). This leads to:

The Word Problem for Semigroups
(1) ∀ x ∀ y [x 1 = x = 1 x]

(2) ∀ x ∀ y ∀ z [x (y z) = (x y) z]

Problem: Determine the provability of

A0 = B0 & A1 = B1 & ... & An-1 = Bn-1 ⟹ An = Bn .

16

Schönfinkel-Curry’s Solution
Schönfinkel in 1924 and then Curry in 1929, both at

Göttingen, began the study of combinators, which were
quickly connected with Church’s λ-calculus of 1932.

From them — with hindsight — we get:

Another Undecidable Theory
(1) ∀ x ∀ y [K(x)(y) = x]

(2) ∀ x ∀ y ∀ z [S(x)(y)(z) = x(z)(y(z))]

(3) ¬ K = S

Problem: Determine the provability of T = 0.

The only problem with this theory is that you either
need models or something like the

Church-Rosser Theorem
to know it is consistent. A weaker theory of

deterministic reduction can be given a fairly short

axiomatization and then be proved consistent

by much simpler means.

17

What’s Happened Since the 1930s?

The 1940s
Simple type theory & λ-calculus Church (1940)

Primitive recursive functionals Gödel (1941-58)

WW II ––––––––––––––––––––––––––––––––––––––

Recursive hierarchies Kleene (1943)

Theory of categories Eilenberg-Mac Lane (1945)

New completeness proofs Henkin (1949-50)

The 1950s
Computing and Intelligence Turing (1950)

Rethinking combinators Rosenbloom (1950)

IAS Computer (MANIAC) von Neumann (1951)

Introduction to Metamathematics Kleene (1952)

IBM 701 Thomas Watson, Jr. (1952)

Arithmetical predicates Kleene (1955)

FORTRAN Backus et al. (1956-57)

ALGOL 58 Bauer et al. (1958)

LISP McCarthy (1958)

Combinatory Logic. Volume I. Curry-Feys-Craig (1958)

Adjoint functors Kan (1958)

Recursive functionals & quantifiers, I.&II. Kleene (1959-63)

Countable functionals Kleene-Kreisel (1959)

18

McCarthy, LISP, & λ-Calculus
LISP History according to McCarthy's memory in 1978. Presented at the ACM
SIGPLAN History of Programming Languages Conference, June 1-3, 1978. It was
pubished in History of Programming Languages, edited by Richard Wexelblat,
Academic Press 1981. Two quotations:

I spent the summer of 1958 at the IBM Information Research Department at the
invitation of Nathaniel Rochester and chose differentiating algebraic expressions as a
sample problem. It led to the following innovations beyond the FORTRAN List
Processing Language:
• • • •
(c) To use functions as arguments, one needs a notation for functions, and it seemed
natural to use the λ-notation of Church (1941). I didn't understand the rest of his
book, so I wasn't tempted to try to implement his more general mechanism for
defining functions. Church used higher-order functionals instead of using conditional
expressions. Conditional expressions are much more readily implemented on
computers.
• • • •
Logical completeness required that the notation used to express functions used as
functional arguments be extended to provide for recursive functions, and the LABEL
notation was invented by Nathaniel Rochester for that purpose. D. M. R. Park pointed
out that LABEL was logically unnecessary since the result could be achieved using
only λ — by a construction analogous to Church's Y-operator, albeit in a more
complicated way.

Other key McCarthy publications:

Recursive Functions of Symbolic Expressions and their Computation by Machine
(Part I). The original paper on LISP from CACM, April 1960. Part II, which never
appeared, was to have had some Lisp programs for algebraic computation.

A Basis for a Mathematical Theory of Computation, first given in 1961, was published
by North-Holland in 1963 in Computer Programming and Formal Systems, edited
by P. Braffort and D. Hirschberg.

Towards a Mathematical Science of Computation, IFIPS 1962 extends the results of
the previous paper. Perhaps the first mention and use of abstract syntax.

Correctness of a Compiler for Arithmetic Expressions with James Painter. May have
been the first proof of correctness of a compiler. Abstract syntax and Lisp-style
recursive definitions kept the paper short.

An HTML site concerning Lisp history can be found at:

http://www8.informatik.uni-erlangen.de/html/lisp-enter.html

http://www-formal.stanford.edu/jmc/history/lisp_html
http://www-formal.stanford.edu/jmc/history/lisp_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/basis_html
http://www-formal.stanford.edu/jmc/basis_html
http://www-formal.stanford.edu/jmc/towards_html
http://www-formal.stanford.edu/jmc/towards_html
http://www-formal.stanford.edu/jmc/mcpain_html
http://www-formal.stanford.edu/jmc/mcpain_html

19

The 1960s
Recursive procedures Dijkstra (1960)
ALGOL 60 Backus et al. (1960)
Elementary formal systems Smullyan (1961)
Grothendieck topologies M.Artin (1962)
Higher-type λ-definability Kleene (1962)
Grothendieck topoi Grothendieck et al. SGA 4 (1963-64-72)
CPL Strachey, et al. (1963)
Functorial semantics Lawvere (1963)
Continuations (1) van Wijngaarden (1964)
Adjoint functors & triples Eilenberg-Moore (1965)
•Cartesian closed categories• Eilenberg-Kelly (1966)
ISWIM & SECD machine Landin (1966)
CUCH & combinator programming Böhm (1966)
New foundations of recursion theory Platek (1966)
Normalization Theorem Tait (1967)
AUTOMATH & dependent types de Bruijn (1967)
Finite-type computable functionals Gandy (1967)
ALGOL 68 van Wijngaarden (1968)
Normal-form discrimination Böhm (1968)
Category of sets Lawvere (1969)
Typed domain logic Scott (1969-93)
Domain-theoretic λ-models Scott (1969)
Formulae-as-types Howard (1969 -1980)
Adjointness in foundations Lawvere (1969)

Theorem. The category of T0-topological spaces and
continuous functions is not cartesian closed.

Theorem. The category of T0-topological spaces with an equivalence relation
and continuous functions respecting equivalence is cartesian closed.

Cartesian closed categories give us the algebraic
version of typed λ-calculus.

20

The 1970s
Continuations (2) Mazurkiewicz (1970)
Continuations (3) F. Lockwood Morris (1970)
Continuations (4) Wadsworth (1970)
Categorical logic Joyal (1970+)
Elementary topoi Lawvere-Tierney (1970)
Denotational semantics Scott-Strachey (1970)
Coherence in closed categories Kelly (1971)
Quantifiers and sheaves Lawvere (1971)
Martin-Löf type theory Martin-Löf (1971)
System F, Fω Girard (1971)
Logic for Computable Functions Milner (1972)
From sheaves to logic Reyes (1974)
Polymorphic λ-calculus Reynolds (1974)
Call-by-name, call-by-value Plotkin (1975)
Modeling Processes Milner (1975)
SASL Turner (1975)
Scheme Sussman-Steele (1975-80)
Functional programming & FP Backus (1977)
First-order categorical logic Makkai-Reyes (1977)
Edinburgh LCF Milner et al. (1978)
Let-polymorphic type inference Milner (1978)
Intersection types Coppo-Dezani (1978)
ML Milner et al. (1979)
*-Autonomous categories Barr (1979)
Sheaves and logic Fourman-Scott (1979)

This decade saw the importance of constructive logic, the

applications to language design and semantics, and the

connections to category theory become much clearer.

21

The 1980s
Frege structures Aczel (1980)
HOPE Burstall et al. (1980)
The Lambda Calculus Book Barendregt (1981-84)
Structural Operational Semantics Plotkin (1981)
Effective Topos Hyland (1982)
Dependent types & modularity Burstall-Lampson (1984)
Locally CCC & type theory Seely (1984)
Calculus of Constructions Coquand-Huet (1985)
Bounded quantification Cardelli-Wegner (1985)
NUPRL Constable et al. (1986)
Higher-order categorical logic Lambek-P.J.Scott (1986)
Cambridge LCF Paulson (1987)
Linear logic Girard et al. (1987-89)
HOL Gordon (1988)
FORSYTHE Reynolds (1988)
Proofs and Types Girard et al. (1989)
Integrating logical & categorical types Gray (1989)
Computational λ-calculus & monads Moggi (1989)

Type theory, resource logic, and computer-assisted

theorem proving finally became practical

during these years.

22

The 1990s
HASKELL Hudak-Hughes-Peyton Jones-Wadler (1990)
Higher-type recursion theory Sacks (1990)
STANDARD ML Milner, et al. (1990-97)
Lazy λ-calculus Abramsky (1990)
Higher-order subtyping Cardelli-Longo (1991)
Categories, Types and Structure Asperti-Longo (1991)
STANDARD ML of NJ MacQueen-Appel (1991-98)
QUEST Cardelli (1991)
Edinburgh LF Harper, et al. (1992)
Pi-Calculus Milner-Parrow-Walker (1992)
Categorical combinators Curien (1993)
Translucent types & modular Harper-Lillibridge (1994)
Full abstraction for PCF Hyland-Ong/Abramsky, et al. (1995)
Algebraic set theory Joyal-Moerdijk (1995)
Object Calculus Abadi-Cardelli (1996)
Typed intermediate languages Tarditi, Morrisett, et al. (1996)
Proof-carrying code Necula-Lee (1996)
Computability and totality in domains Berger (1997)
Typed assembly language Morrisett, et al. (1998)
Type theory via exact categories Birkedal, et al. (1998)
Categorification Baez (1998)

Abstract ideas now found many applications in

language implementation and in compiling.

23

The New Millennium
Predicative topos Moerdijk-Palmgren (2000)

Sketches of an Elephant Johnstone (2002+)

Differential λ-calculus Ehrhard/Regnier (2003)

Modular Structural Operational Semantics Mosses (2004)

A λ-calculus for real analysis Taylor (2005+)

Homotopy type theory Awodey-Warren (2006)

Univalence axiom Voevodsky (2006+)

The safe λ-calculus Ong, et al. (2007)

Higher topos theory Lurie (2009)

Functional Reactive Programming Hudak, et al. (2010)

Univalent Foundations Program @ IAS & HoTT Book
 Voevodsky, et al. (2012-13)

In the natural world, convergent evolution can give
creatures analogous structures — even though they

cannot mate. But, in the intellectual world,
analogous structures can be taken advantage of
through interfertilization of areas and in finding

new applications.

And that we have seen happen with the
λ-calculus many, many times over the years.

http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29

24

A Closing Thought from Robert Harper
For me, I think it is important to stress the overwhelming influence of
the λ-calculus among all other models of computation:

 • It codifies not only computation, but also the basic principles of
 human reason (natural deduction).

 • Moreover, it was born fully formed, and is directly and
 immediately relevant to this day, rather than something that
 collects dust on the shelf.

Admittedly Turing's model had the advantage of being explicitly
psychologically motivated, but on the other hand Church focused
on one of the greatest achievements of the human mind, the concept
of a variable (= reasoning under hypotheses). Church saw that this
was central, and time has born out the significance of his insight.

By contrast, no one cares one bit about the details of a Turing
Machine; for, it fails to address the central issue of modularity (logical
consequence), which is so important in programming and reasoning.
And it does not extend to higher-order computation in anything like
a natural or smooth way.

LAMBDA CONQUERS ALL!

Perhaps my good friend and colleague has spoken a

little too strongly here, as Turing Machines have

had many applications, say in Complexity Theory.

But the study of Programming Languages

does not seem to need them today.

F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century.
In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and
John Woods eds., North-Holland/Elsevier Science, 2009.

S. C. Kleene. Origins of recursive function theory. Annals of the History of
Computing, vol. 3 (1981), pp. 52–67.

J. B. Rosser. Highlights of the history of the lambda calculus. Annals of the History of
Computing, vol. 6 (1984), pp. 337–349.

R. Adams. An Early History of Recursive Functions and Computability from Gödel
to Turing. 1983 Ph.D. Thesis. Reprinted by Docent Press, 2011.

R.I. Soare. Formalism and intuition in computability. Phil. Trans. Royal Soc. A, vol. 370
(2012), pp. 3277–3304.

N.D. Jones and J.G. Simonsen. Programs = data = first-class citizens in a
computational world. Phil. Trans. Royal Soc. A, vol. 370 (2012), pp. 3305-3318.

G.D. Plotkin. The origins of structural operational semantics. Journal of Logic and
Algebraic Programming, vol. 60 (2004), pp. 3-15.

M. Davis. Why Gödel Didn't Have Church's Thesis, Information and Control, vol.54
(1982), pp. 3-24.

W. Sieg. Step by Recursive Step: Church's Analysis of Effective Calculability. Bull. of
Symbolic Logic, vol. 3 (1997), pp. 154-180. (Reprinted in Olszewski, et al. 2006.)

25

A very helpful review of the subject of the λ-calculus is in the first reference,
and the memoirs by Alonzo Church’s two early students are also useful in
checking history. The thesis by Rod Adams gives a very careful survey of
early literature. A somewhat revisionist view of the history of recursive
function theory with many helpful references is found in the Soare paper.
Jones and Simonsen fill out ideas related to machine structure. The whole
Royal Society volume is devoted to The Turing Legacy. And Plotkin also
recently wrote on operational semantics. The older collection edited by
Rolf Herken, The Universal Turing Machine: A Half-Century Survey,
has many, many excellent historical discussions by Kleene, Gandy, Davis,
Feferman, and others. The papers of Davis and Sieg give very detailed
historical reviews of the early 1930s. The recent conference Church’s
Thesis After 70 Years (Olszewski, et al. eds. 2006) has many interesting
discussions.

A Selective Bibliography

What follows is a listing of books. Ph.D. theses and conference
proceedings have been excluded, for the most part, as well as very

elementary text books. A comprehensive survey is impossible, but the
current list has tried to indicate some of the history and development of the

intertwining strands of λ-calculus, logic, recursive-function theory,
category theory, and programming-language semantics.

M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

J. Adamek, H. Herrlich and G. E. Strecker. Abstract and Concrete Categories: The
Joy of Cats. Dover Pub., 2009.

L. Allison. A Practical Introduction to Denotational Semantics. Cambridge Univ.
Press, 1987.

R. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

C.A. Anderson and M. Zelëny, eds. Logic, Meaning and Computation : Essays in
Memory of Alonzo Church. Springer, 2001.

A.W. Appel. Compiling with Continuations. Cambridge Univ. Press, 2007.

A.W. Appel, ed. Alan Turing’s Systems of Logic: The Princeton Thesis. Princeton
Univ. Press, 2012.

A. Asperti and G. Longo. Categories, Types and Structures: An Introduction to
Category Theory for the Working Computer Scientist. MIT Press, 1991.

S. Awodey. Category Theory. Oxford Univ. Press, 2010.

C. Badesa. The Birth of Model Theory: Löwenheim's Theorem in the Frame of the
Theory of Relatives. Princeton Univ. Press, 2004.

H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics.
North-Holland, 1981. 2nd (revised) ed. 1984.

J.L. Bell. Toposes and Local Set Theories: An Introduction. Dover Pub., 2008.

J. van Benthem. Language in Action: Categories, Lambdas, and Dynamic Logic.
MIT Press, 1995.

T.J. Bergin and R.G. Gibson, eds. History of Programming Languages. ACM Press
and Addison-Wesley, 1996.

K. Bimbó. Combinatory Logic: Pure, Applied, Typed. CRC Press, 2012.

G.S. Boolos, J.P. Burgess, and R.C. Jeffery. Computability and Logic. 5th ed.,
Cambridge Univ. Press, 2007.

26

http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1

G. Brady. From Peirce to Skolem: A Neglected Chapter in the History of Logic.
North Holland, 2000.

K.B. Bruce. Foundations of Object-Oriented Languages: Types and Semantics.
MIT Press, 2002.

W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

G. Castagna. Object Oriented Programming: A Unified Foundation. Birkhäuser,
1997.

A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
Reprinted 1951 and 2000.

P. Cockshott, L.M. Mackenzie and G. Michaelson. Computation and its Limits. Oxford
Univ. Press, 2012.

R. Constable, et al. Implementing Mathematics with The Nuprl Proof Development
System. CreateSpace, reprint 2012.

S.B. Cooper. Computability Theory. CRC Press, 2003.

S.B. Cooper and J. van Leeuwen, eds. Alan Turing: His Work and Impact. Elsevier
Science, 2012.

G. Cousineau and M. Mauny. The Functional Approach to Programming. (K.
Callaway, trans.), Cambridge Univ. Press, 1998.

R.L. Crole. Categories for Types. Cambridge Univ. Press, 1994.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional
Programming. Pitman (UK) and Wiley (USA), 1986. 2nd edn., Birkhäuser, 1993.

H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, 1958. (3rd
edn. 1974).

H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, Volume II. North-
Holland, 1972.

M. Davis. Computability and Unsolvability. Dover Pub., 1982.

M. Davis, R. Sigal, E.J. Weyuker. Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science. 2nd ed., Morgan Kaufmann, 1994.

M. Davis, ed. The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Dover Pub., 2004.

M. Davis. The Universal Computer: The Road from Leibniz to Turing. CRC Press,
2012.

M. Dezani, S. R. della Rocca, and M. Venturini Zilli, eds. A Collection of Contributions
in Honour of Corrado Böhm. Elsevier, 1993.

27

R. DiCosmo. Isomorphisms of Types: from Delta-Calculus to Information Retrieval
and Language Design. Birkhäuser, 1994.

K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming.
College Publications, 2004.

G. Dowek and J-J. Lévy. Introduction to the Theory of Programming Languages.
Springer, 2010.

R.K. Dybvig. The Scheme Programming Language. MIT Press, 2009.

G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe. Pantheon Books,
2012.

E. Engeler, et al. The Combinatory Programme. Birkhäuser, 1994.

T. Ehrhard, et al. Linear Logic in Computer Science. Cambridge Univ. Press, 2004.

S. Feferman. In the Light of Logic. Oxford Univ. Press, 1998.

M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge
Univ. Press, 2004.

P. Fletcher. Truth, Proof and Infinity: A Theory of Constructive Reasoning.
Springer, 2010.

M.P. Fourman, P.T. Johnstone and A.M. Pitts, eds. Applications of Categories in
Computer Science: Proceedings of the London Mathematical Society
Symposium, Durham 1991. Cambridge Univ. Press, 1992.

T. Franzén. Gödel's Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters/CRC Press, 2005.

D.P. Friedman and M. Felleisen. The Little Schemer. MIT Press, 1995.D.P. Friedman
and M. Felleisen. The Seasoned Schemer. MIT Press, 1995.

D.P. Friedman, W.E. Byrd and O. Kiselyov. The Reasoned Schemer. MIT Press, 2005.

D.P. Friedman and M. Wand. Essentials of Programming Languages. MIT Press,
2008.

G. Gierz, et al. Continuous Lattices and Domains. Cambridge Univ. Press, 2003.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Univ. Press, 1989.

R. Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Pub, 2006.

M.J.C. Gordon. The Denotational Description of Programming Languages.
Springer, 1979.

A.D. Gordon. Functional Programming and Input/Output. Cambridge Univ. Press,
1994.

28

J.G. Granström. Treatise on Intuitionistic Type Theory. Springer, 2011.

I. Grattan-Guinness. The Search for Mathematical Roots 1870–1940. Princeton
University Press, 2000.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
MIT Press,1992.

C.A. Gunter and J.C. Mitchell, eds. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. MIT Press, 1994.

L. Haaparanta. The Development of Modern Logic. Oxford Univ. Press, 2009.

C. Hankin. Lambda Calculi: A Guide for Computer Scientists. Clarendon Press,
1994.

M. Hansen and H. Rischel. Introduction to Programming using SML. Addison
Wesley, 1999.

R. Harper. Practical Foundations for Programming Languages. Cambridge Univ.
Press, forthcoming 2013?

J. van Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879
– 1931.
Harvard Univ. Press, 1967.

P. Henderson. Functional Programming: Application and Implementation. Prentice
Hall, 1980.

R. Herken. The Universal Turing Machine: A Half-Century Survey, Springer-
Verlag 1988 (2nd ed., 1995).

J. R. Hindley and J. P. Seldin, eds. To H. B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda-Calculus.
Cambridge Univ. Press, 1986.

J. R. Hindley, B. Lercher, and J. P. Seldin. Introduction to Combinatory Logic.
Cambridge Univ. Press, 1972.

J. R. Hindley. Basic Simple Type Theory. Cambridge Univ. Press, 1997.

G. Huet, ed. Logical Foundations of Functional Programming. Addison-Wesley,
1990.

G. Huet and G. Plotkin, eds. Logical Frameworks. Cambridge Univ. Press, 1991.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge Univ. Press, 2004.

B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 2001.

29

http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=John%20C.%20Mitchell
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=John%20C.%20Mitchell

M.P. Jones. Qualified Types: Theory and Practice. Cambridge Univ. Press, 2003.

P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, vols. 1
and 2. Oxford Univ. Press, 2002. (Vol. 3 in preparation.)

F.D. Kamareddine, T. Laan, R. Nederpelt. A Modern Perspective on Type Theory:
From its Origins until Today. Springer, 2004.

S.C. Kleene. Introduction to Metamathematics. North-Holland, 1952. (Reprinted
1964. Reprinted with an introduction by M. Beeson, Ishi Press, 2009.)

J.-L. Krivine. Lambda-Calculus, Types and Models, Ellis-Horwood (USA) and
Prentice-Hall (UK), 1993.

R. Krömer. Tool and Object: A History and Philosophy of Category Theory.
Birkhäuser, 2007.

J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge Univ. Press, 1988.

F.W. Lawvere and S.H. Schanuel. Conceptual Mathematics: A First Introduction to
Categories. Cambridge Univ. Press, 2009.

J. van Leeuwen, ed. Formal Models and Semantics. Elsevier Science, 1992.

H. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. 2nd ed.,
Prentice-Hall, 1997.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
Univ. Press, 1994.

J. Lurie. Higher Topos Theory. Princeton Univ. Press, 2009.

S. Mac Lane. Mathematics: Form and Function. Springer, 1985.

S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd ed., 1998.

P. Mancosu. The Adventure of Reason. Interplay Between Philosophy of
Mathematics and Mathematical Logic, 1900-1940. Oxford Univ. Press, 2010.

J.-P. Marquis. From a Geometrical Point of View: A Study of the History and
Philosophy of Category Theory. Springer, 2008.

P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, Napoli,
1984. Notes by Giovanni Sambin of lectures given in Padova, June 1980.

R. Milne and Christopher Strachey. Theory of Programming Language Semantics.
Parts A & B in Two Volumes. Chapman & Hall, 1977.

R. Milner. A Calculus of Communicating Systems. LNCS, vol. 92, Springer-Verlag,
1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

30

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=F.D.%20Kamareddine
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=F.D.%20Kamareddine

R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, 1991.

R. Milner, R. Harper, D. MacQueen, and M. Tofte. The Definition of Standard ML -
Revised. MIT Press, 1997.

J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

J.C. Mitchell. Concepts in Programming Languages. Cambridge Univ. Press, 2002.

R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, eds. Selected Papers on
Automath. Elsevier, 1994.

E.J. Neuhold, et al. eds. Formal Description of Programming Concepts. Springer,
1991.

H.R. Nielson and F. Nielson. Semantics with Applications: An Appetizer. Springer,
2007.

B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s Type
Theory. Oxford Univ. Press, 1990.

P. O'Hearn and R. Tennent. Algol-like Languages. Birkhäuser, 1996.

C. Okasaki. Purely Functional Data Structures. Cambridge Univ. Press, 1998.

A. Olszewski, J. Wolenski, R. Janusz, eds. Church’s Thesis after 70 Years. Ontos-
Verlag, 2006.

J. Van Oosten. Realizability: An Introduction to Its Categorical Side. Elsevier
Science, 2008.

L.C. Paulson. ML for the Working Programmer. Cambridge Univ. Press, 1996.

M.C. Pedicchio and W. Tholen, eds. Categorical Foundations: Special Topics in
Order, Topology, Algebra, and Sheaf Theory. Cambridge Univ. Press, 2003.

C. Petzold. The Annotated Turing: A Guided Tour Through Alan Turing's Historic
Paper on Computability and the Turing Machine. Wiley, 2008.

F. Pfenning. Computation and Deduction. Cambridge Univ. Press, 2000.

B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

B. C. Pierce. Advanced Topics in Types and Programming Languages. MIT Press,
2004.

A.M. Pitts and P. Dybjer, eds. Semantics and Logics of Computation. Camb. Univ. Pr,
1997.

I. Poernomo, J.N. Crossley, and M. Wirsing. Adapting Proofs-as-Programs : The
Curry-Howard Protocol. Springer, 2005.

31

http://www.amazon.com/Hanne-Riis-Nielson/e/B001JORYHI/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Hanne-Riis-Nielson/e/B001JORYHI/ref=ntt_athr_dp_pel_1
https://www.google.com/search?hl=en&sa=N&tbo=1&biw=851&bih=428&tbm=bks&tbm=bks&q=inauthor:%22Jaap+Van+Oosten%22&ei=QHTVT-LGKoPM2AX4jZWKDw&ved=0CD0Q9Ag
https://www.google.com/search?hl=en&sa=N&tbo=1&biw=851&bih=428&tbm=bks&tbm=bks&q=inauthor:%22Jaap+Van+Oosten%22&ei=QHTVT-LGKoPM2AX4jZWKDw&ved=0CD0Q9Ag

D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Pub., 2006.

J.C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

J.C. Reynolds. Theories of Programming Languages. Cambridge Univ. Press, 2009.
G.E. Révész. Lambda-Claculus, Combinators, and Functional Programming.
Cambridge Univ. Press, 1988.

S.R. della Rocca and L. Paolini. The Parametric Lambda Calculus: A Metamodel for
Computation. Springer, 2004.

P. Rosenbloom. The Elements of Mathematical Logic. Dover, 1950.

D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge
Univ. Press, 2001

D.A. Schmidt. Denotational Semantics: A Methodology for Language Development.
William C Brown Pub., 1988.

D.A. Schmidt. The Structure of Typed Programming Languages. MIT Press, 1994.

H. Simmons. Derivation and Computation: Taking the Curry-Howard
Correspondence Seriously. Cambridge Univ. Press, 2000.

H. Simmons. An Introduction to Category Theory. Cambridge Univ. Press, 2011.

R.M. Smullyan, Theory of formal systems. Annals of Mathematics Studies, vol. 47,
1961

R.M. Smullyan. To Mock a Mockingbird: And Other Logic Puzzles Including an
Amazing Adventure in Combinatory Logic. Alfred A. Knopf, 1985.

G. Sommaruga. History and Philosophy of Constructive Type Theory. Springer,
2000/2010.

G. Sommaruga, ed. Foundational Theories of Classical and Constructive
Mathematics. Springer, 2011.

M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Elsevier Science, 2006.

S. Stenlund. Combinators, Lambda-Terms and Proof Theory. D. Reidel, 1972.
 J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977.

A. Tarski, A. Mostowski and R.M. Robinson. Undecidable Theories. Dover Pub., 2010.

R.D. Tennent. Principles of Programming Languages. Prentice Hall, 1981.

S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

32

S. Thompson. Haskell: The Craft of Functional Programming. 3rd. ed., Addison-
Wesley, 2011.

R. Turner. Constructive Foundations for Functional Languages. McGraw Hill, 1991.

R.F.C. Walters. Categories and Computer Science. Cambridge Univ. Press, 1992.

I. Watson. The Universal Machine: From the Dawn of Computing to Digital
Consciousness. Copernicus Books, 2012.

P. Wegner. Programming Languages, Information Structures, and Machine
Organization. McGraw-Hill, 1968.

G. Winskel. Formal Semantics of Programming Languages. MIT Press, 1993.

V.E. Wolfengagen. Categorical Abstract Machine: Introduction to Computations.
Center JurInfoR, Moscow, 2nd. ed., 2002.

V.E. Wolfengagen. Combinatory Logic in Programming. Center JurInfoR, Moscow,
2nd. ed.,2003.

V.E. Wolfengagen. Methods and Means for Computations with Objects: Applicative
Computational Systems. Center JurInfoR, Moscow, 2004.

G.Q. Zhang. Logic of Domains. Birkhäuser, 1991.

H. Zenil, ed. A Computable Universe: Understanding and Exploring Nature
as Computation. World Scientific, 2012.

And, no, I have not read — or even seen — all these books!

Suggestions, corrections and additions would be appreciated, so please
send e-mail to dana.scott@cs.cmu.edu with the subject heading:

Lambda calculus.

The question of finding the the most recent edition of a book is vexing, but
Amazon.com was quite helpful. Bibliographies of several books and

papers were “mined”, and of course all these books themselves also give
references to the ever more vast journal literature. There is also

the problem — in outlining history — of comparing
the date of discovery to the date of publication.

Perhaps there are many such confusions in this survey.

33

http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm

