A -Calculus:
Then & Now

Dana S. Scott

University Professor Emeritus
Carnegie Mellon University

Visiting Scholar
University of California, Berkeley

dana.scott@cs.cmu.edu

TURING CENTENNIAL CELEBRATION
Princeton University, May 10-12, 2012

ACM TURING CENTENARY CELEBRATION
San Francisco, June 15-16, 2012

UC BERKELEY LOGIC COLLOQUIUM
Berkeley, August 24, 2012

Notes derived from the slides presented at the conferences.
A brief amount of text has been added for continuity.
The author would be happy to hear reactions and suggestions.
Version of 17 November 2013

1

Symbols of Princeton

M| VET | NOV |§
TES | TAM
1| EN | TVM (]

Traditional From the Graduate Alumni
(to encourage ecology)

The A -calculus was begun
at Princefon, and the purpose of this
report is to show how it has been
recycled every decade after the 1930s
in new and useful ways.

WARNING: We cannot give here a complete history of Mathematical
Logic and related areas. The present report may even have too much
detfail. But it is hoped readers might be encouraged to look further.

2

A Quick Look Back to Beginnings

1870s
Begriffsschrift

1880s

What are numbers?
Number-theoretic axioms

1890s

Voorlesungen Uber die Algebra der Logik
Grundgesetze der Arithmetik
Formulario Mathematico

Grundlagen der Geometrie

1900s

Diophantine problem
Russell's Paradox
Principles of Mathematics
Richard’s Paradox
Theory of Types

1910s

Principia Mathematica
Calculus of relatives

WW |

Frege (1879)

Dedekind (1888)
Peano (1889)

Schroder (1890-1905)
Frege (1893-1903)
Peano (1895-1901)
Hilbert (1899)

Hilbert (1900)
Russell (1901)
Russell (1903)
Richard (1905)
Russell (1908)

Whitehead-Russell (1910-12-13)
Léwenheim (1915)

1920s

Léwenheim-Skolem Theorem
Propositional calculus completeness
Monadic predicate calculus decidable
Abstract proof rules

Primitive recursive arithmetic
Combinators

Function-based set theory
“Conceptual” undecidability

Epsilon operator

Combinators (again)

Ackermann function
Entscheidungsproblem

Abriss der Logistik & simple type theory

Skolem (1920)

Post (1921)

Behmann (1922)
Hertz (1922)

Skolem (1923
Schonfinkel (1924
von Neumann (1925
Finsler (1926
Hilbert-Bernays (1927)
Curry (1927)
Ackermann (1928)
Hilbert-Ackermann (1928)
Carnap (1929)

~ — ~— ~—

It was very reasonable for Hilbert and Ackermann to emphasize
the Decision Problem, as special cases had been solved.

http://en.wikipedia.org/wiki/Grundlagen_der_Geometrie
http://en.wikipedia.org/wiki/Grundlagen_der_Geometrie

Church vs. Turing

‘

Alonzo Church

Born: 14 June 1903 in Washington, D.C., USA.
Died: 11 Aug 1995 in Hudson, Ohio, USA.
Ph.D.: Princeton University, 1927, USA

Alan Turing

Born: 23 June 1912, Maida Vale, London, UK.
Died: 7 June 1954, Wilmslow, Cheshire, UK.
Ph.D.: Princeton University, 1938, USA.

Alonzo Church, “An Unsolvable Problem in Elementary Number Theory,”
American J. of Mathematics, vol. 5 (1936), pp. 345-363.

Alonzo Church, “A Note on the Entscheidungsproblem,” J. of Symbolic
Logic, vol. 1 (1936) pp. 40-41. Correction: ibid, pp. 101-102.

Alan Turing, “On Computable Numbers with an Application to the
Entscheidungsproblem,” Proc. of the London Math. Soc., vol. 42 (1936), pp.
230-267. Correction: vol. 43 (1937), pp. 544-546.

Alan Turing, “Computability and A -definability,” J. Symbolic Logic, vol. 2
(1937), pp. 153-163.

The work of Church and Turing in 1936 was
done independently.

4

http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Wilmslow

Three Pioneers

Haskell Brooks Curry

Born: 12 Sept 1900 in Millis, MA, USA.

Died: 1 Sept 1982 in State College, PA, USA.
Ph.D.: Géttingen Universitat, 1930, Germany.
Thesis: Grundlagen der kombinatorischen Logik

Stephen Cole Kleene

Born: 5 Jan 1909 in Hartford, CN, USA.
Died: 25 Jan 1994 in Madison, WI, USA.
Ph.D.: Princeton University, 1934, USA.
Thesis: A Theory of Positive Integers in Formal Logic

J. Barkley Rosser

Born: 6 Dec 1907 in Jacksonville, FL, USA.
Died: 5 Sept 1989 in Madison, WI, USA.

Ph.D.: Princeton University, 1934, USA.
Thesis: A Mathematical Logic without Variables

It seems, sadly, that Alan Turing never had a chance to
meet these people or Kurt Godel.

A Very Busy Decade

1930s

Combinatory logic Curry (1930-32)
Herbrand’s Theorem Herbrand (1930)
Completeness proof Godel (1930)
Partial consistency proof Herbrand (1931)
Incompleteness Godel (1931)
Untyped \-calculus Church (1932-33-41)
Studies of primitive recursion Péter (1932-36)
Non-standard models Skolem (1933)
Functionality in Combinatory Logic Curry (1934)
Grundlagen der Mathematik Hilbert-Bernays (1934-39)
Natural deduction Gentzen (1934)
Number-theoretic consistency & € o -induction Gentzen (1934)
Inconsistency of Church’s System Kleene-Rosser (1936)
Confluence theorem Church-Rosser (1936)
Finite combinatory processes Post (1936)
Turing machines Turing (1936-37)
Recursive undecidability Church-Turing (1936)
General recursive functions Kleene (1936)
Further completeness proofs Maltsev (1936)
Improving incompleteness theorems Rosser (1936)
Fixed-point combinator Turing (1937)
Computability and A-definability Turing (1937)

Starting out with Godel and ending up with Turing,
it would take a long time to comprehend
and apply all the developments
in this period.

6

What is the A -Calculus?

The calculus gives rules for the explicit definition
of functions; however, the type-free version also
permits recursion and self-replication.

O-conversion

AX.[...Xe..] = AY.[...Y...]

B-conversion

(AX.[.e.Xeeo])(T) = [ee.Tu..]

N-conversion

AX.F(X) = F

Church’s original system (1932) also had rules
for logic, but that was the system Kleene-Rosser
(1936) proved inconsistent!

The names of the rules are due to Curry.
The last rule fails in many interpretations, and
special efforts are needed to make it valid.

Does A -Calculus have Models?

Yes! There is a calculus for enumeration operators!
First we need some simple definitions on
integers and sets of integers:

(n,m) = 22(2m+1)
set(0) = &

set((n,m)) =set(n) U {m}

X* = {n|set(n) C X}

Application
F(X)={m|dneX*.(n,m)eF}

Abstraction
AX.[...X...]=
{0}U{(n,m) | me[...set(n)...]}

Every set of integers can be used as an
enumeration operator. The operator is computable
if the set is r.e. Many compound contexts do
define enumeration operators.

8

The Connection to Computability

Church Numerals

0 = AF.AX.X
ntl = AF.AX.F(n(F) (X))
ntm = AF.AX.n(F)(m(F) (X))
nxm = AF.n(m(F))

m® = n(m)
n-1 = [a little harder]

Fixed-Point Combinator

Y = AF. (AX.F(X(X)))(AX.F(X(X)))
Y(F) = F(Y(F))

Theorem. For every partial recursive function g(n),
there is a constant A -term G such that

G(n) = g(n), for all n.

Kleene and Turing independently proved
this in different ways.

In the model, G denotes an r.e. set.

Some A -Definitions

pair= AX.AY.AF.F(X)(Y)
fst= AP.P(AX.AY. X)
snd= AP.P(AX.AY.Y)
succ= AN.AF.AX.F(N(F) (X))
shft= AS.AP. pair(S(fst(P))) (fst(P))
pred = AN. snd (N (shft(succ)) (pair(0) (0)))

Kleene’s “trick” here is fo introduce pairs as a data

structure, and then apply iteration fo get

a sequence of pairs.

test= AN.AU.AV.snd(N(shft(AX.X)) (pair(V) (U)))

mult= AN. AM.AF.N(M(F))
fact= AN.test(N) (1) (mult(N) (fact(pred(N))))
fact=Y(AF.AN.test(N) (1) (mult(N) (F(pred(N)))))

The factorial function must be the most overdefined
function in the history of mankind!

10

Only Student

ROBIN OLIVER GANDY

Born: 23 September 1919, Peppard, Oxon., UK.

Died: 20 November 1995, Oxford, UK.

Ph.D.: Cambridge, 1953.

Thesis: On axiomatic systems in Mathematics
and theories in Physics.

Supervisor: Alan Turing.

Reader: Oxford University, Wolfson College,
1969-1986.

Students: 26 and 126 descendants.

Another pioneer, Gandy, later became a key contributor

to the development of Recursive Function Theory.

It is inferesting fo note that both the teams of

Mvyhill and Shepherdson
and, later,

Friedberg and Rogers
defined enumeration operators without seeing they

had models for the A-calculus.

11

http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Wilmslow

Church-Turing Thesis

accepted with the help of Kleene
after Turing explained his machines.
Effectively computable functions

of natural numbers can be identified with
those definable by:

e A-calculus
 Herbrand-Godel equations

If Godel had stayed in Princeton, and

If Church and Kleene had argued better
for data structures in the A-calculus,
Then surely Godel would have accepted
A-calculus as a foundation much earlier.
Note that Kleene proved the equivalence with

Herbrand-Godel computability before Turings work.

12

Kleene's Complaint

| myself, perhaps unduly influenced by rather chilly
receptions from audiences around 1933-35 to disquisitions
on A-definability, chose, after general recursiveness had
appeared, to put my work in that format. | did later publish
one paper 1962 on A-definability in higher recursion
theory.

| thought general recursiveness came the closest to
traditional mathematics. It spoke in a language familiar
to mathematicians, extending the theory of special
recursiveness, which derived from formulations of
Dedekind and Peano in the mainstream of mathematics.

| cannot complain about my audiences after 1935,
although whether the improvement came from switching |
do not know. In retrospect, | now feel it was too bad | did
not keep active in A-definability as well. So | am glad that

interest in A-definability has revived, as illustrated by Dana
Scott's 1963 communication.

Were the truth to be known, Kleene translated much
of what he had done in A-calculus into working with

intfegers. Indeed, the application operation {e}(n)
defines a partial combinatory algebra with many

properties similar to the work of Curry and Rosser.

13

What is the Entscheidungsproblem?

To determine whether a formula of
the first-order predicate calculus

N LN -1 2: 1] LA M1 S—
Church’s Solution

Theorem. Only a finite number of axioms are
needed to define a non-recursive set of integers.

R.M.Robinsons Arithmetic
(1) VxVy[x=y & Sx=8y]
(2) Vx[x=0 e —3Iy.x=Sy]
(3) VxVy[(x+0)=x & (x+8Sy)=S(x+Y)]
(4) VxVy[(xx0)=0 & (xxSy)=((xxy)+Xx)]
After the solution of Hilberts 10th Problem,

the applicability of this theory
became even easier.

14

Theorem. Only a finite number of axioms are
needed to define the Universal Turing Machine.

Minskyizing the UTS
Starting with Claude Shannon in 1956, many people —
often in competition with Marvin Minsky — proposed very
small UTMs (but their operation requires extensive coding

of patterns). But, axiomatically, they do not require
as many axioms as Turing did.

Post-Markov'’s Solution

The basic idea of Post (1943) was that a logistic system
is simply a set of rules specifying how to change
one string of symbols (antecedent) into another string
of symbols (consequent). This leads to:

The Word Problem for Semigroups
(1) VxVy[x1=x=1x]
(2) VX Vy Vz[x(yz)=(xy)z]

Problem: Determine the provability of
Ao=Bo &A1 =B1 & ... & An-1 =Bn-1 = A =B,.

15

Schonfinkel-Curry’s Solution

Schonfinkel in 1924 and then Curry in 1929, both at
Gottingen, began the study of combinators, which were
quickly connected with Churchs A -calculus of 1932.

From them — with hindsight — we get:

Another Undecidable Theory
(1) Vx Vy[KX)(y) =x]

(2) Vx Vy Vz[SX)|(y)(2) =x(2)(y(2))]
(3) = K=S8

Problem: Determine the provability of T = 0.

The only problem with this theory is that you either
need models or something like the
Church-Rosser Theorem

to know it is consistent. A weaker theory of
deterministic reduction can be given a fairly short

axiomatization and then be proved consistent

by much simpler means.

16

What's Happened Since the 1930s?

The 1940s

Simple type theory & \-calculus
Primitive recursive functionals

Church (1940)
Godel (1941-58)

WW I

Recursive hierarchies
Theory of categories
New completeness proofs

The 1950s

Computing and Intelligence
Rethinking combinators

IAS Computer (MANIAC)
Introduction to Metamathematics
IBM 701

Arithmetical predicates

Kleene (1943)
Eilenberg-Mac Lane (1945)
Henkin (1949-50)

Turing (1950)

Rosenbloom (1950)

von Neumann (1951)
Kleene (1952)

Thomas Watson, Jr. (1952)
Kleene (1955)

FORTRAN Backus et al. (1956-57)
ALGOL 58 Bauer et al. (1958)
LISP McCarthy (1958)
Combinatory Logic. Volume |. Curry-Feys-Craig (1958)
Adjoint functors Kan (1958)
Recursive functionals & quantifiers, 1.&Il. Kleene (1959-63)

Countable functionals

17

Kleene-Kreisel (1959)

LISP History according to McCarthy's memory in 1978. Presented at the ACM
SIGPLAN History of Programming Languages Conference, June 1-3, 1978. It was
pubished in History of Programming Languages, edited by Richard Wexelblat,
Academic Press 1981. Two quotations:

| spent the summer of 1958 at the IBM Information Research Department at the
invitation of Nathaniel Rochester and chose differentiating algebraic expressions as a
sample problem. It led to the following innovations beyond the FORTRAN List
Processing Language:

(c) To use functions as arguments, one needs a notation for functions, and it seemed
natural to use the A-notation of Church (1941). | didn't understand the rest of his
book, so | wasn't tempted to try to implement his more general mechanism for
defining functions. Church used higher-order functionals instead of using conditional
expressions. Conditional expressions are much more readily implemented on
computers.

Logical completeness required that the notation used to express functions used as
functional arguments be extended to provide for recursive functions, and the LABEL
notation was invented by Nathaniel Rochester for that purpose. D. M. R. Park pointed
out that LABEL was logically unnecessary since the result could be achieved using
only A — by a construction analogous to Church's Y-operator, albeit in a more

complicated way.

Other key McCarthy publications:

Recursive Functions of Symbolic Expressions and their Computation by Machine
(Part |). The original paper on LISP from CACM, April 1960. Part I, which never
appeared, was to have had some Lisp programs for algebraic computation.

A Basis for a Mathematical Theory of Computation, first given in 1961, was published
by North-Holland in 1963 in Computer Programming and Formal Systems, edited
by P. Braffort and D. Hirschberg.

Towards a Mathematical Science of Computation, IFIPS 1962 extends the results of
the previous paper. Perhaps the first mention and use of abstract syntax.

Correctness of a Compiler for Arithmetic Expressions with James Painter. May have
been the first proof of correctness of a compiler. Abstract syntax and Lisp-style
recursive definitions kept the paper short.

An HTML site concerning Lisp history can be found at:

http://www8.informatik.uni-erlangen.de/html/lisp-enter.htmi

18

http://www-formal.stanford.edu/jmc/history/lisp_html
http://www-formal.stanford.edu/jmc/history/lisp_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/recursive_html
http://www-formal.stanford.edu/jmc/basis_html
http://www-formal.stanford.edu/jmc/basis_html
http://www-formal.stanford.edu/jmc/towards_html
http://www-formal.stanford.edu/jmc/towards_html
http://www-formal.stanford.edu/jmc/mcpain_html
http://www-formal.stanford.edu/jmc/mcpain_html

The 1960s

Recursive procedures Dijkstra (1960)
ALGOL 60 Backus et al. (1960)
Elementary formal systems Smullyan (1961)
Grothendieck topologies M.Artin (1962)
Higher-type A-definability Kleene (1962)
Grothendieck topoi Grothendieck et al. SGA 4 (1963-64-72)
CPL Strachey, et al. (1963)
Functorial semantics Lawvere (1963)
Continuations (1) van Wijngaarden (1964)
Adjoint functors & triples Eilenberg-Moore (1965)
eCartesian closed categories® Eilenberg-Kelly (1966)
ISWIM & SECD machine Landin (1966)
CUCH & combinator programming Bohm (1966)
New foundations of recursion theory Platek (1966)
Normalization Theorem Tait (1967)
AUTOMATH & dependent types de Bruijn (1967)
Finite-type computable functionals Gandy (1967)
ALGOL 68 van Wijngaarden (1968)
Normal-form discrimination Bohm (1968)
Category of sets Lawvere (1969)
Typed domain logic Scott (1969-93)
Domain-theoretic A-models Scott (1969)
Formulae-as-types Howard (1969 -1980)
Adjointness in foundations Lawvere (1969)

Theorem. The category of Te-topological spaces and
continuous functions is not cartesian closed.

Theorem. The category of Te-topological spaces with an equivalence relation
and continuous functions respecting equivalence is cartesian closed.

Cartesian closed categories give us the algebraic
version of typed A -calculus.

19

The 1970s

Continuations (2)
Continuations (3)
Continuations (4)

Categorical logic

Elementary topoi

Denotational semantics
Coherence in closed categories
Quantifiers and sheaves
Martin-L6f type theory

System F, Fw

Logic for Computable Functions
From sheaves to logic
Polymorphic A-calculus
Call-by-name, call-by-value
Modeling Processes

SASL

Scheme

Functional programming & FP
First-order categorical logic
Edinburgh LCF
Let-polymorphic type inference
Intersection types

ML

*-Autonomous categories
Sheaves and logic

Mazurkiewicz (1970)

F. Lockwood Morris (1970)
Wadsworth (1970)
Joyal (1970+)
Lawvere-Tierney (1970)
Scott-Strachey (1970)
Kelly (1971)

Lawvere (1971)
Martin-Lof (1971)
Girard (1971)

Milner (1972)

Reyes (1974)

Reynolds (1974)

Plotkin (1975)

Milner (1975)

Turner (1975)
Sussman-Steele (1975-80)
Backus (1977)
Makkai-Reyes (1977)
Milner et al. (1978)
Milner (1978)
Coppo-Dezani (1978)
Milner et al. (1979)

Barr (1979)
Fourman-Scott (1979)

This decade saw the importance of constructive logic, the

applications to language design and semantics, and the

connections to category theory become much clearer.

20

The 1980s

Frege structures Aczel (1980)
HOPE Burstall et al. (1980)
The Lambda Calculus Book Barendregt (1981-84)
Structural Operational Semantics Plotkin (1981)
Effective Topos Hyland (1982)
Dependent types & modularity Burstall-Lampson (1984)
Locally CCC & type theory Seely (1984)
Calculus of Constructions Coquand-Huet (1985)
Bounded quantification Cardelli-Wegner (1985)
NUPRL Constable et al. (1986)
Higher-order categorical logic Lambek-P.J.Scott (1986)
Cambridge LCF Paulson (1987)
Linear logic Girard et al. (1987-89)
HOL Gordon (1988)
FORSYTHE Reynolds (1988)
Proofs and Types Girard et al. (1989)
Integrating logical & categorical types Gray (1989)
Computational A-calculus & monads Moggi (1989)

Type theory, resource logic, and computer-assisted
theorem proving finally became practical

during these years.

21

The 1990s

HASKELL Hudak-Hughes-Peyton Jones-Wadler (1990)

Higher-type recursion theory Sacks (1990)
STANDARD ML Milner, et al. (1990-97)
Lazy A-calculus Abramsky (1990)
Higher-order subtyping Cardelli-Longo (1991)
Categories, Types and Structure Asperti-Longo (1991)
STANDARD ML of NJ MacQueen-Appel (1991-98)
QUEST Cardelli (1991)
Edinburgh LF Harper, et al. (1992)
Pi-Calculus Milner-Parrow-Walker (1992)
Categorical combinators Curien (1993)
Translucent types & modular Harper-Lillibridge (1994)
Full abstraction for PCF Hyland-Ong/Abramsky, et al. (1995)
Algebraic set theory Joyal-Moerdijk (1995)
Object Calculus Abadi-Cardelli (1996)
Typed intermediate languages Tarditi, Morrisett, et al. (1996)
Proof-carrying code Necula-Lee (1996)
Computability and totality in domains Berger (1997)
Typed assembly language Morrisett, et al. (1998)
Type theory via exact categories Birkedal, et al. (1998)
Categorification Baez (1998)

Abstract ideas now found many applications in

language implementation and in compiling.

22

The New Millennium

Predicative topos Moerdijk-Palmgren (2000)
Sketches of an Elephant Johnstone (2002+)
Differential A-calculus Ehrhard/Regnier (2003)
Modular Structural Operational Semantics Mosses (2004)
A A-calculus for real analysis Taylor (2005+)
Homotopy type theory Awodey-Warren (2006)
Univalence axiom Voevodsky (2006+)
The safe A-calculus Ong, et al. (2007)
Higher topos theory Lurie (2009)
Functional Reactive Programming Hudak, et al. (2010)

Univalent Foundations Program @ IAS & HoTT Book
Voevodsky, et al. (2012-13)

In the natural world, convergent evolution can give
creatures analogous structures — even though they
cannot mate. But, in the intellectual world,
analogous structures can be taken advantage of
through interfertilization of areas and in finding
new applications.

And that we have seen happen with the

A -calculus many, many times over the years.

23

http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29
http://en.wikipedia.org/wiki/Analogy_%28biology%29

For me, | think it is important to stress the overwhelming influence of
the A-calculus among all other models of computation:

* |t codifies not only computation, but also the basic principles of
human reason (natural deduction).

* Moreover, it was born fully formed, and is directly and
immediately relevant to this day, rather than something that
collects dust on the shelf.

Admittedly Turing's model had the advantage of being explicitly
psychologically motivated, but on the other hand Church focused
on one of the greatest achievements of the human mind, the concept
of a variable (= reasoning under hypotheses). Church saw that this
was central, and time has born out the significance of his insight.

By contrast, no one cares one bit about the details of a Turing
Machine; for, it fails to address the central issue of modularity (logical
consequence), which is so important in programming and reasoning.
And it does not extend to higher-order computation in anything like
a natural or smooth way.

Perhaps my good friend and colleague has spoken a
little too strongly here, as Turing Machines have
had many applications, say in Complexity Theory.

But the study of Programming Languages

does not seem to need them today.

24

A Selective Bibliography

A very helpful review of the subject of the A-calculus is in the first reference,
and the memoirs by Alonzo Church’s two early students are also useful in
checking history. The thesis by Rod Adams gives a very careful survey of
early literature. A somewhat revisionist view of the history of recursive
function theory with many helpful references is found in the Soare paper.
Jones and Simonsen fill out ideas related to machine structure. The whole
Royal Society volume is devoted to The Turing Legacy. And Plotkin also
recently wrote on operational semantics. The older collection edited by
Rolf Herken, The Universal Turing Machine: A Half-Century Survey,
has many, many excellent historical discussions by Kleene, Gandy, Davis,
Feferman, and others. The papers of Davis and Sieg give very detailed
historical reviews of the early 1930s. The recent conference Church’s
Thesis After 70 Years (Olszewski, et al. eds. 2006) has many interesting
discussions.

F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century.
In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and
John Woods eds., North-Holland/Elsevier Science, 2009.

S. C. Kleene. Origins of recursive function theory. Annals of the History of
Computing, vol. 3 (1981), pp. 52—-67.

J. B. Rosser. Highlights of the history of the lambda calculus. Annals of the History of
Computing, vol. 6 (1984), pp. 337-349.

R. Adams. An Early History of Recursive Functions and Computability from Gédel
to Turing. 1983 Ph.D. Thesis. Reprinted by Docent Press, 2011.

R.l. Soare. Formalism and intuition in computability. Phil. Trans. Royal Soc. A, vol. 370
(2012), pp. 3277-3304.

N.D. Jones and J.G. Simonsen. Programs = data = first-class citizens in a
computational world. Phil. Trans. Royal Soc. A, vol. 370 (2012), pp. 3305-3318.

G.D. Plotkin. The origins of structural operational semantics. Journal of Logic and
Algebraic Programming, vol. 60 (2004), pp. 3-15.

M. Davis. Why Godel Didn't Have Church's Thesis, Information and Control, vol.54
(1982), pp. 3-24.

W. Sieg. Step by Recursive Step: Church's Analysis of Effective Calculability. Bull. of
Symbolic Logic, vol. 3 (1997), pp. 154-180. (Reprinted in Olszewski, et al. 2006.)

25

What follows is a listing of books. Ph.D. theses and conference
proceedings have been excluded, for the most part, as well as very
elementary text books. A comprehensive survey is impossible, but the
current list has tried to indicate some of the history and development of the
intertwining strands of A-calculus, logic, recursive-function theory,
category theory, and programming-language semantics.

M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

J. Adamek, H. Herrlich and G. E. Strecker. Abstract and Concrete Categories: The
Joy of Cats. Dover Pub., 2009.

L. Allison. A Practical Introduction to Denotational Semantics. Cambridge Univ.
Press, 1987.

R. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

C.A. Anderson and M. Zelény, eds. Logic, Meaning and Computation : Essays in
Memory of Alonzo Church. Springer, 2001.

A.W. Appel. Compiling with Continuations. Cambridge Univ. Press, 2007.

A.W. Appel, ed. Alan Turing’s Systems of Logic: The Princeton Thesis. Princeton
Univ. Press, 2012.

A. Asperti and G. Longo. Categories, Types and Structures: An Introduction to
Category Theory for the Working Computer Scientist. MIT Press, 1991.

S. Awodey. Category Theory. Oxford Univ. Press, 2010.

C. Badesa. The Birth of Model Theory: Lowenheim's Theorem in the Frame of the
Theory of Relatives. Princeton Univ. Press, 2004.

H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics.
North-Holland, 1981. 2nd (revised) ed. 1984.

J.L. Bell. Toposes and Local Set Theories: An Introduction. Dover Pub., 2008.

J. van Benthem. Language in Action: Categories, Lambdas, and Dynamic Logic.
MIT Press, 1995.

T.J. Bergin and R.G. Gibson, eds. History of Programming Languages. ACM Press
and Addison-Wesley, 1996.

K. Bimbo. Combinatory Logic: Pure, Applied, Typed. CRC Press, 2012.

G.S. Boolos, J.P. Burgess, and R.C. Jeffery. Computability and Logic. 5th ed.,
Cambridge Univ. Press, 2007.

26

http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1
http://www.amazon.com/Abstract-Concrete-Categories-Dover-Mathematics/dp/0486469344/ref=la_B000AP7TAY_1_1?ie=UTF8&qid=1339465472&sr=1-1

G. Brady. From Peirce to Skolem: A Neglected Chapter in the History of Logic.
North Holland, 2000.

K.B. Bruce. Foundations of Object-Oriented Languages: Types and Semantics.
MIT Press, 2002.

W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

G. Castagna. Object Oriented Programming: A Unified Foundation. Birkhauser,
1997.

A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
Reprinted 1951 and 2000.

P. Cockshott, L.M. Mackenzie and G. Michaelson. Computation and its Limits. Oxford
Univ. Press, 2012.

R. Constable, et al. Implementing Mathematics with The Nuprl Proof Development
System. CreateSpace, reprint 2012.

S.B. Cooper. Computability Theory. CRC Press, 2003.

S.B. Cooper and J. van Leeuwen, eds. Alan Turing: His Work and Impact. Elsevier
Science, 2012.

G. Cousineau and M. Mauny. The Functional Approach to Programming. (K.
Callaway, trans.), Cambridge Univ. Press, 1998.

R.L. Crole. Categories for Types. Cambridge Univ. Press, 1994.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional
Programming. Pitman (UK) and Wiley (USA), 1986. 2nd edn., Birkhauser, 1993.

H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, 1958. (3rd
edn. 1974).

H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, Volume Il. North-
Holland, 1972.

M. Davis. Computability and Unsolvability. Dover Pub., 1982.

M. Davis, R. Sigal, E.J. Weyuker. Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science. 2nd ed., Morgan Kaufmann, 1994.

M. Davis, ed. The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Dover Pub., 2004.

M. Davis. The Universal Computer: The Road from Leibniz to Turing. CRC Press,
2012.

M. Dezani, S. R. della Rocca, and M. Venturini Zilli, eds. A Collection of Contributions
in Honour of Corrado Bohm. Elsevier, 1993.

27

R. DiCosmo. Isomorphisms of Types: from Delta-Calculus to Information Retrieval
and Language Design. Birkhauser, 1994.

K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming.
College Publications, 2004.

G. Dowek and J-J. Lévy. Introduction to the Theory of Programming Languages.
Springer, 2010.

R.K. Dybvig. The Scheme Programming Language. MIT Press, 2009.

G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe. Pantheon Books,
2012.

E. Engeler, et al. The Combinatory Programme. Birkhauser, 1994.
T. Ehrhard, et al. Linear Logic in Computer Science. Cambridge Univ. Press, 2004.
S. Feferman. In the Light of Logic. Oxford Univ. Press, 1998.

M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge
Univ. Press, 2004.

P. Fletcher. Truth, Proof and Infinity: A Theory of Constructive Reasoning.
Springer, 2010.

M.P. Fourman, P.T. Johnstone and A.M. Pitts, eds. Applications of Categories in
Computer Science: Proceedings of the London Mathematical Society
Symposium, Durham 1991. Cambridge Univ. Press, 1992.

T. Franzén. Gédel's Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters/CRC Press, 2005.

D.P. Friedman and M. Felleisen. The Little Schemer. MIT Press, 1995.D.P. Friedman
and M. Felleisen. The Seasoned Schemer. MIT Press, 1995.

D.P. Friedman, W.E. Byrd and O. Kiselyov. The Reasoned Schemer. MIT Press, 2005.

D.P. Friedman and M. Wand. Essentials of Programming Languages. MIT Press,
2008.

G. Gierz, et al. Continuous Lattices and Domains. Cambridge Univ. Press, 2003.
J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Univ. Press, 1989.
R. Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Pub, 2006.

M.J.C. Gordon. The Denotational Description of Programming Languages.
Springer, 1979.

A.D. Gordon. Functional Programming and Input/Output. Cambridge Univ. Press,
1994.

28

J.G. Granstrom. Treatise on Intuitionistic Type Theory. Springer, 2011.

|. Grattan-Guinness. The Search for Mathematical Roots 1870—-1940. Princeton
University Press, 2000.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
MIT Press,1992.

C.A. Gunter and J.C. Mitchell, eds. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. MIT Press, 1994.

L. Haaparanta. The Development of Modern Logic. Oxford Univ. Press, 2009.

C. Hankin. Lambda Calculi: A Guide for Computer Scientists. Clarendon Press,
1994.

M. Hansen and H. Rischel. Introduction to Programming using SML. Addison
Wesley, 1999.

R. Harper. Practical Foundations for Programming Languages. Cambridge Univ.
Press, forthcoming 20137

J. van Heijenoort. From Frege to Gédel: A Source Book in Mathematical Logic, 1879
- 1931.
Harvard Univ. Press, 1967.

P. Henderson. Functional Programming: Application and Implementation. Prentice
Hall, 1980.

R. Herken. The Universal Turing Machine: A Half-Century Survey, Springer-
Verlag 1988 (2nd ed., 1995).

J. R. Hindley and J. P. Seldin, eds. To H. B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda-Calculus.
Cambridge Univ. Press, 1986.

J. R. Hindley, B. Lercher, and J. P. Seldin. Introduction to Combinatory Logic.
Cambridge Univ. Press, 1972.

J. R. Hindley. Basic Simple Type Theory. Cambridge Univ. Press, 1997.

G. Huet, ed. Logical Foundations of Functional Programming. Addison-Wesley,
1990.

G. Huet and G. Plotkin, eds. Logical Frameworks. Cambridge Univ. Press, 1991.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge Univ. Press, 2004.

B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 2001.

29

http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=John%20C.%20Mitchell
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=John%20C.%20Mitchell

M.P. Jones. Qualified Types: Theory and Practice. Cambridge Univ. Press, 2003.

P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, vols. 1
and 2. Oxford Univ. Press, 2002. (Vol. 3 in preparation.)

F.D. Kamareddine, T. Laan, R. Nederpelt. A Modern Perspective on Type Theory:
From its Origins until Today. Springer, 2004.

S.C. Kleene. Introduction to Metamathematics. North-Holland, 1952. (Reprinted
1964. Reprinted with an introduction by M. Beeson, Ishi Press, 2009.)

J.-L. Krivine. Lambda-Calculus, Types and Models, Ellis-Horwood (USA) and
Prentice-Hall (UK), 1993.

R. Kréomer. Tool and Object: A History and Philosophy of Category Theory.
Birkhauser, 2007.

J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge Univ. Press, 1988.

F.W. Lawvere and S.H. Schanuel. Conceptual Mathematics: A First Introduction to
Categories. Cambridge Univ. Press, 2009.

J. van Leeuwen, ed. Formal Models and Semantics. Elsevier Science, 1992.

H. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. 2nd ed.,
Prentice-Hall, 1997.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
Univ. Press, 1994.

J. Lurie. Higher Topos Theory. Princeton Univ. Press, 2009.
S. Mac Lane. Mathematics: Form and Function. Springer, 1985.
S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd ed., 1998.

P. Mancosu. The Adventure of Reason. Interplay Between Philosophy of
Mathematics and Mathematical Logic, 1900-1940. Oxford Univ. Press, 2010.

J.-P. Marquis. From a Geometrical Point of View: A Study of the History and
Philosophy of Category Theory. Springer, 2008.

P. Martin-Lo6f. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, Napoli,
1984. Notes by Giovanni Sambin of lectures given in Padova, June 1980.

R. Milne and Christopher Strachey. Theory of Programming Language Semantics.
Parts A & B in Two Volumes. Chapman & Hall, 1977.

R. Milner. A Calculus of Communicating Systems. LNCS, vol. 92, Springer-Verlag,
1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

30

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=F.D.%20Kamareddine
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=F.D.%20Kamareddine

R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, 1991.

R. Milner, R. Harper, D. MacQueen, and M. Tofte. The Definition of Standard ML -
Revised. MIT Press, 1997.

J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
J.C. Mitchell. Concepts in Programming Languages. Cambridge Univ. Press, 2002.

R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, eds. Selected Papers on
Automath. Elsevier, 1994.

E.J. Neuhold, et al. eds. Formal Description of Programming Concepts. Springer,
1991.

H.R. Nielson and F. Nielson. Semantics with Applications: An Appetizer. Springer,
2007.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-L6f ’s Type
Theory. Oxford Univ. Press, 1990.

P. O'Hearn and R. Tennent. Algol-like Languages. Birkhauser, 1996.
C. Okasaki. Purely Functional Data Structures. Cambridge Univ. Press, 1998.

A. Olszewski, J. Wolenski, R. Janusz, eds. Church’s Thesis after 70 Years. Ontos-
Verlag, 2006.

J. Van Oosten. Realizability: An Introduction to Its Categorical Side. Elsevier
Science, 2008.

L.C. Paulson. ML for the Working Programmer. Cambridge Univ. Press, 1996.

M.C. Pedicchio and W. Tholen, eds. Categorical Foundations: Special Topics in
Order, Topology, Algebra, and Sheaf Theory. Cambridge Univ. Press, 2003.

C. Petzold. The Annotated Turing: A Guided Tour Through Alan Turing's Historic
Paper on Computability and the Turing Machine. Wiley, 2008.

F. Pfenning. Computation and Deduction. Cambridge Univ. Press, 2000.
B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

B. C. Pierce. Advanced Topics in Types and Programming Languages. MIT Press,
2004.

A.M. Pitts and P. Dybjer, eds. Semantics and Logics of Computation. Camb. Univ. Pr,
1997.

|. Poernomo, J.N. Crossley, and M. Wirsing. Adapting Proofs-as-Programs : The
Curry-Howard Protocol. Springer, 2005.

31

http://www.amazon.com/Hanne-Riis-Nielson/e/B001JORYHI/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Hanne-Riis-Nielson/e/B001JORYHI/ref=ntt_athr_dp_pel_1
https://www.google.com/search?hl=en&sa=N&tbo=1&biw=851&bih=428&tbm=bks&tbm=bks&q=inauthor:%22Jaap+Van+Oosten%22&ei=QHTVT-LGKoPM2AX4jZWKDw&ved=0CD0Q9Ag
https://www.google.com/search?hl=en&sa=N&tbo=1&biw=851&bih=428&tbm=bks&tbm=bks&q=inauthor:%22Jaap+Van+Oosten%22&ei=QHTVT-LGKoPM2AX4jZWKDw&ved=0CD0Q9Ag

D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Pub., 2006.
J.C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

J.C. Reynolds. Theories of Programming Languages. Cambridge Univ. Press, 2009.
G.E. Révész. Lambda-Claculus, Combinators, and Functional Programming.
Cambridge Univ. Press, 1988.

S.R. della Rocca and L. Paolini. The Parametric Lambda Calculus: A Metamodel for
Computation. Springer, 2004.

P. Rosenbloom. The Elements of Mathematical Logic. Dover, 1950.

D. Sangiorgi and D. Walker. The Tt -calculus: a Theory of Mobile Processes.

Cambridge
Univ. Press, 2001

D.A. Schmidt. Denotational Semantics: A Methodology for Language Development.
William C Brown Pub., 1988.

D.A. Schmidt. The Structure of Typed Programming Languages. MIT Press, 1994.

H. Simmons. Derivation and Computation: Taking the Curry-Howard
Correspondence Seriously. Cambridge Univ. Press, 2000.

H. Simmons. An Introduction to Category Theory. Cambridge Univ. Press, 2011.

R.M. Smullyan, Theory of formal systems. Annals of Mathematics Studies, vol. 47,
1961

R.M. Smullyan. To Mock a Mockingbird: And Other Logic Puzzles Including an
Amazing Adventure in Combinatory Logic. Alfred A. Knopf, 1985.

G. Sommaruga. History and Philosophy of Constructive Type Theory. Springer,
2000/2010.

G. Sommaruga, ed. Foundational Theories of Classical and Constructive
Mathematics. Springer, 2011.

M.H. Segrensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Elsevier Science, 2006.

S. Stenlund. Combinators, Lambda-Terms and Proof Theory. D. Reidel, 1972.
J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977.

A. Tarski, A. Mostowski and R.M. Robinson. Undecidable Theories. Dover Pub., 2010.
R.D. Tennent. Principles of Programming Languages. Prentice Hall, 1981.

S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

32

S. Thompson. Haskell: The Craft of Functional Programming. 3rd. ed., Addison-
Wesley, 2011.

R. Turner. Constructive Foundations for Functional Languages. McGraw Hill, 1991.
R.F.C. Walters. Categories and Computer Science. Cambridge Univ. Press, 1992.

|. Watson. The Universal Machine: From the Dawn of Computing to Digital
Consciousness. Copernicus Books, 2012.

P. Wegner. Programming Languages, Information Structures, and Machine
Organization. McGraw-Hill, 1968.

G. Winskel. Formal Semantics of Programming Languages. MIT Press, 1993.

V.E. Wolfengagen. Categorical Abstract Machine: Introduction to Computations.
Center JurinfoR, Moscow, 2nd. ed., 2002.

V.E. Wolfengagen. Combinatory Logic in Programming. Center JurinfoR, Moscow,
2nd. ed.,2003.

V.E. Wolfengagen. Methods and Means for Computations with Objects: Applicative
Computational Systems. Center JurlnfoR, Moscow, 2004.

G.Q. Zhang. Logic of Domains. Birkhauser, 1991.

H. Zenil, ed. A Computable Universe: Understanding and Exploring Nature
as Computation. World Scientific, 2012.

And, no, | have not read — or even seen — all these books!

Suggestions, corrections and additions would be appreciated, so please
send e-mail to dana.scott@cs.cmu.edu with the subject heading:
Lambda calculus.

The question of finding the the most recent edition of a book is vexing, but
Amazon.com was quite helpful. Bibliographies of several books and
papers were “mined”, and of course all these books themselves also give
references to the ever more vast journal literature. There is also
the problem — in outlining history — of comparing
the date of discovery to the date of publication.

Perhaps there are many such confusions in this survey.

33

http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm
http://vew.0catch.com/summaries/vew_5-89158-100-0.htm

