Open In App

How to plot on secondary Y-Axis with Plotly Express in Python?

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Perquisites: Python Plotly

In this article, we will learn how to plot on secondary y-Axis with plotly express. 

One of the most deceptively-powerful features of Plotly data visualization is the ability for a viewer to quickly analyze a sufficient amount of information about data when pointing the cursor over the point label appears. It provides us the easiest way to read and analyze information from the document. Multi-Axis charts are used to plot data points from a query along two or more axes. Here we will discuss different methods to plot multiple y-axis in plotly express to make it more clear.

Syntax: yaxis=dict(title="yaxis title", overlaying="y", side="left", position=[0-1])

Parameters:

  • title: str, (name of the axis)
  • overlaying: str, (name of the bars are plotted over one another)
  • side: ['top', 'bottom', 'left', 'right']
  • position: int/float, [in range between 0-1].

Example 1: Two Y-Axis

In this example, we are taking two data plots, the first one is Bar chart and another is a Scatter chart. Update_layout the properties of the figure’s layout with a dict and/or with keyword arguments, In which we will define consecutive secondary yaxis (i.e yaxis, yaxis2 ) with the help of the above-given syntax for each axis.

Python3
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Bar(x=[1, 2, 3], y=[40, 50, 60], name="yaxis1 data", yaxis='y')) fig.add_trace(go.Scatter(x=[2, 3, 4], y=[4, 5, 6], name="yaxis2 data", yaxis="y2")) # Create axis objects fig.update_layout(xaxis=dict(domain=[0.3, 0.7]), #create 1st y axis  yaxis=dict( title="yaxis title", titlefont=dict(color="#1f77b4"), tickfont=dict(color="#1f77b4")), #create 2nd y axis  yaxis2=dict(title="yaxis2 title",overlaying="y", side="left",position=0.15)) # title fig.update_layout( title_text="Geeksforgeeks - Three y-axes", width=800, ) fig.show() 

 
 

Output:


 

Example 2: Three Y-axis


 

In this example, we are taking three data plots, the first one is Bar chart and another is a Scatter chart and the last one is another Bar Chart. Update_layout the properties of the figure’s layout with a dict and/or with keyword arguments. In which we will define consecutive secondary y-axis (i.e yaxis, yaxis2, yaxis3... ) with the help of the above-given syntax for each axis


 

Python3
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6], name="yaxis1 data", yaxis='y')) fig.add_trace(go.Scatter(x=[2, 3, 5], y=[40, 50, 60], name="yaxis2 data", yaxis="y2")) fig.add_trace(go.Bar(x=[4, 5, 6], y=[40000, 50000, 60000], name="yaxis3 data", yaxis="y3")) # Create axis objects fig.update_layout(xaxis=dict(domain=[0.3, 0.7]), # create 1st y axis yaxis=dict( title="yaxis title", titlefont=dict(color="#1f77b4"), tickfont=dict(color="#1f77b4")), # create 2nd y axis yaxis2=dict(title="yaxis2 title", overlaying="y", side="left", position=0.15), # create 3rd y axis yaxis3=dict( title="yaxis3 title", anchor="x", overlaying="y", side="right")) # title fig.update_layout( title_text="Geeksforgeeks - Three y-axes", width=800, ) fig.show() 

Output:

Example 3: Four Y-axis

In this example, we are taking two data plots of Bar charts and two plots of Scatters charts. Update_layout the properties of the figure’s layout with a dict and/or with keyword arguments. In which we will define consecutive secondary y-axis (i.e yaxis, yaxis2, yaxis3, yaxis4 ) with the help of above-given syntax for each axis

Python3
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6], name="yaxis1 data")) fig.add_trace(go.Scatter(x=[2, 3, 4], y=[40, 50, 60], name="yaxis2 data", yaxis="y2")) fig.add_trace(go.Scatter(x=[4, 5, 6], y=[40000, 50000, 60000], name="yaxis3 data", yaxis="y3")) fig.add_trace(go.Bar( x=[5, 6, 7], y=[400000, 500000, 600000], name="yaxis4 data", yaxis="y4")) # Create axis objects fig.update_layout( xaxis=dict( domain=[0.3, 0.7] ), yaxis=dict( title="yaxis title", titlefont=dict(color="#1f77b4"), tickfont=dict(color="#1f77b4")), yaxis2=dict( title="yaxis2 title", titlefont=dict(color="#ff7f0e"), tickfont=dict(color="#ff7f0e"), anchor="free", overlaying="y", side="left", position=0.15), yaxis3=dict( title="yaxis3 title", titlefont=dict(color="#d62728"), tickfont=dict(color="#d62728"), anchor="x", overlaying="y", side="right"), yaxis4=dict( title="yaxis4 title", titlefont=dict(color="#9467bd"), tickfont=dict(color="#9467bd"), anchor="free", overlaying="y", side="right", position=0.85) ) # Update layout properties fig.update_layout( title_text="Four y-axes", width=800, ) fig.show() 

Output:


Explore