|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# 5 Filters\n", |
| 8 | + "\n", |
| 9 | + "To filter signals on graphs, we need to define filters. They are represented in the toolbox by the [`pygsp.filters.Filter` class](https://pygsp.readthedocs.io/en/stable/reference/filters.html). Filters are usually defined in the spectral domain. Given the transfer function\n", |
| 10 | + "\n", |
| 11 | + "**TODO**\n", |
| 12 | + "* look at <https://pygsp.readthedocs.io/en/stable/tutorials/intro.html#filters>\n", |
| 13 | + "* localization as great tool to visualize filters in the vertex domain" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "import numpy as np\n", |
| 23 | + "import matplotlib.pyplot as plt\n", |
| 24 | + "from pygsp import graphs, filters" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "## 5.1 Heat diffusion\n", |
| 32 | + "\n", |
| 33 | + "**TODO**: show that this is heat diffusion" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": null, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "G1 = graphs.Sensor(seed=42)\n", |
| 43 | + "G1.compute_fourier_basis()\n", |
| 44 | + "G2 = graphs.Ring(N=100)\n", |
| 45 | + "G2.compute_fourier_basis()\n", |
| 46 | + "G2.set_coordinates('line1D')\n", |
| 47 | + "\n", |
| 48 | + "TAUS = [0, 5, 100]\n", |
| 49 | + "DELTA = 10\n", |
| 50 | + "\n", |
| 51 | + "fig, axes = plt.subplots(len(TAUS), 3, figsize=(15, 6))\n", |
| 52 | + "\n", |
| 53 | + "for i, tau in enumerate(TAUS):\n", |
| 54 | + " g1 = filters.Heat(G1, tau)\n", |
| 55 | + " g2 = filters.Heat(G2, tau)\n", |
| 56 | + " \n", |
| 57 | + " y = g1.localize(DELTA).squeeze()\n", |
| 58 | + " G1.plot_signal(y, ax=axes[i, 0])\n", |
| 59 | + " axes[i, 0].set_axis_off()\n", |
| 60 | + " axes[i, 0].text(0, -0.2, '$y^T L y = {:.2f}$'.format(y.T @ G1.L @ y))\n", |
| 61 | + " \n", |
| 62 | + " G2.plot_signal(g2.localize(G2.N//2), ax=axes[i, 2])\n", |
| 63 | + " \n", |
| 64 | + " g1.plot(ax=axes[i, 1])\n", |
| 65 | + " axes[i, 1].set_xlabel('')\n", |
| 66 | + " axes[i, 1].set_ylabel('')\n", |
| 67 | + " text = r'$\\hat{{g}}(\\lambda) = \\exp \\left( \\frac{{-{{{}}} \\lambda}}{{\\lambda_{{max}}}} \\right)$'.format(tau)\n", |
| 68 | + " axes[i, 1].text(6, 0.5, text, fontsize=15)\n", |
| 69 | + " \n", |
| 70 | + "axes[0, 0].set_title('$y = \\hat{{g}}(L) \\delta_{{{}}}$: localized on sensor'.format(DELTA))\n", |
| 71 | + "axes[0, 1].set_title('$\\hat{g}(\\lambda)$: filter defined in the spectral domain')\n", |
| 72 | + "axes[0, 2].set_title('$y = \\hat{{g}}(L) \\delta_{{{}}}$: localized on ring graph'.format(G2.N//2))\n", |
| 73 | + "axes[-1, 1].set_xlabel(\"$\\lambda$: laplacian's eigenvalues / graph frequencies\")" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "## 5.2 Filterbanks\n", |
| 81 | + "\n", |
| 82 | + "**TODO**:\n", |
| 83 | + "* popular filterbanks\n", |
| 84 | + "* tight vs non-tight" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "G = graphs.Ring(N=20)\n", |
| 94 | + "G.estimate_lmax()\n", |
| 95 | + "G.set_coordinates('line1D')\n", |
| 96 | + "g = filters.HalfCosine(G)\n", |
| 97 | + "s = g.localize(G.N // 2)\n", |
| 98 | + "g.plot()\n", |
| 99 | + "G.plot_signal(s)" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "markdown", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "## 5.3 Approximations" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "**TODO**\n", |
| 114 | + "* Approximation with Chebyshev polynomials.\n", |
| 115 | + "* Show computational advantage.\n", |
| 116 | + "* Show how it smoothes the original filterbank." |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "metadata": {}, |
| 122 | + "source": [ |
| 123 | + "## 5.4 Exercise\n", |
| 124 | + "\n", |
| 125 | + "Solve the following problem using a graph filter:\n", |
| 126 | + "$$\\mathbf{x}^* = \\operatorname*{arg\\,min}_{\\mathbf{x} \\in \\mathbb{R}^N} \\|\\mathbf{y} - \\mathbf{x}\\|_2^2 + \\alpha \\mathbf{x}^\\intercal \\mathbf{L} \\mathbf{x},$$\n", |
| 127 | + "where $y$ is the observed signal, $\\alpha$ is an hyper-parameter which controls the trade-off between the data fidelity term and the smoothness prior." |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "# Your code here." |
| 137 | + ] |
| 138 | + } |
| 139 | + ], |
| 140 | + "metadata": { |
| 141 | + "kernelspec": { |
| 142 | + "display_name": "Python 3", |
| 143 | + "language": "python", |
| 144 | + "name": "python3" |
| 145 | + }, |
| 146 | + "language_info": { |
| 147 | + "codemirror_mode": { |
| 148 | + "name": "ipython", |
| 149 | + "version": 3 |
| 150 | + }, |
| 151 | + "file_extension": ".py", |
| 152 | + "mimetype": "text/x-python", |
| 153 | + "name": "python", |
| 154 | + "nbconvert_exporter": "python", |
| 155 | + "pygments_lexer": "ipython3", |
| 156 | + "version": "3.7.0" |
| 157 | + } |
| 158 | + }, |
| 159 | + "nbformat": 4, |
| 160 | + "nbformat_minor": 2 |
| 161 | +} |
0 commit comments