|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# 3 Graph signals\n", |
| 8 | + "\n", |
| 9 | + "A graph signal is a function $\\mathcal{V} \\rightarrow \\mathbb{R}$ that associates a value to each node $v \\in \\mathcal{V}$ of a graph. The signal values can be represented as a vector $f \\in \\mathbb{R}^N$ where $N = |\\mathcal{V}|$ is the number of nodes in the graph." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy as np\n", |
| 19 | + "from pygsp import graphs" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "markdown", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "Let's generate a graph and a random signal." |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": null, |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "graph = graphs.Sensor(N=100)\n", |
| 36 | + "signal = np.random.normal(size=graph.N)" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "metadata": {}, |
| 42 | + "source": [ |
| 43 | + "We can now plot the signal on the graph to visualize it and see that it's indeed random." |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "graph.plot_signal(signal)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "markdown", |
| 57 | + "metadata": {}, |
| 58 | + "source": [ |
| 59 | + "## 3.1 Gradient and divergence\n", |
| 60 | + "\n", |
| 61 | + "The gradient $\\nabla_\\mathcal{G} \\ f$ of the signal $f$ on the graph $\\mathcal{G}$ is a signal on the edges defined as\n", |
| 62 | + "\n", |
| 63 | + "$$(\\nabla_\\mathcal{G})_{(i,j)} \\ f = \\sqrt{W_{ij}} (f_i - f_j)$$" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "graph.compute_differential_operator()\n", |
| 73 | + "gradient = graph.D @ signal\n", |
| 74 | + "assert gradient.size == graph.Ne" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "Similarly, we can compute the divergence of an edge signal, which is again a signal on the nodes.\n", |
| 82 | + "\n", |
| 83 | + "$$(\\operatorname{div}_\\mathcal{G} x)_i = \\sum_{j \\sim i} \\sqrt{W_{ij}} x_{(i,j)}$$" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "divergence = graph.D.T @ gradient\n", |
| 93 | + "assert divergence.size == graph.N" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "graph.plot_signal(divergence)" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "markdown", |
| 107 | + "metadata": {}, |
| 108 | + "source": [ |
| 109 | + "The Laplacian operator is indeed the divergence of the gradient." |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "np.testing.assert_allclose(graph.L @ signal, divergence)" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "## 3.2 Smoothness" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "The smoothness of a signal can be computed by the quadratic form\n", |
| 133 | + "\n", |
| 134 | + "$$ f^\\intercal L f = \\sum_{i \\sim j} W_{ij} (f_i - f_j)^2 $$" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "signal.T @ graph.L @ signal" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "markdown", |
| 148 | + "metadata": {}, |
| 149 | + "source": [ |
| 150 | + "## 3.3 Exercise\n", |
| 151 | + "\n", |
| 152 | + "What is the smoothest graph signal, i.e. the signal $f$ for which $f^\\intercal L f = 0$? Verify computationally." |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": null, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "# Your code here." |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "markdown", |
| 166 | + "metadata": {}, |
| 167 | + "source": [ |
| 168 | + "What if $L$ is the normalized Laplacian? Verify computationally." |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [ |
| 177 | + "graph.compute_laplacian('normalized')\n", |
| 178 | + "\n", |
| 179 | + "# Your code here." |
| 180 | + ] |
| 181 | + } |
| 182 | + ], |
| 183 | + "metadata": { |
| 184 | + "kernelspec": { |
| 185 | + "display_name": "Python 3", |
| 186 | + "language": "python", |
| 187 | + "name": "python3" |
| 188 | + }, |
| 189 | + "language_info": { |
| 190 | + "codemirror_mode": { |
| 191 | + "name": "ipython", |
| 192 | + "version": 3 |
| 193 | + }, |
| 194 | + "file_extension": ".py", |
| 195 | + "mimetype": "text/x-python", |
| 196 | + "name": "python", |
| 197 | + "nbconvert_exporter": "python", |
| 198 | + "pygments_lexer": "ipython3", |
| 199 | + "version": "3.7.0" |
| 200 | + } |
| 201 | + }, |
| 202 | + "nbformat": 4, |
| 203 | + "nbformat_minor": 2 |
| 204 | +} |
0 commit comments