To add x and y labels to a Pandas plot, you can use the .set_xlabel() and .set_ylabel() methods on the Pandas DataFrame's plot object. Here's an example of how to do it:
import pandas as pd import matplotlib.pyplot as plt # Create a sample DataFrame data = {'X': [1, 2, 3, 4, 5], 'Y': [10, 15, 13, 18, 20]} df = pd.DataFrame(data) # Create a scatter plot ax = df.plot.scatter(x='X', y='Y') # Add x and y labels ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") # Show the plot plt.show() In this example:
We create a sample DataFrame df with two columns 'X' and 'Y' containing data.
We create a scatter plot using the plot.scatter() method, specifying the 'X' column as the x-axis and the 'Y' column as the y-axis.
We access the plot object as ax.
We use ax.set_xlabel() to set the x-axis label and ax.set_ylabel() to set the y-axis label.
Finally, we display the plot using plt.show().
This will create a scatter plot with x and y labels.
You can customize the labels and formatting as needed for your specific plot.
How to add x-label and y-label to a Pandas plot?
import pandas as pd import matplotlib.pyplot as plt # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with labels ax = df.plot() ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") plt.show() Pandas plot xlabel ylabel syntax
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with labels using syntax df.plot().set(xlabel="X-axis Label", ylabel="Y-axis Label") How to label axes on Pandas plot?
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with labeled axes ax = df.plot() ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") Adding titles and labels to Pandas plot
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with title and labels ax = df.plot() ax.set_title("Plot Title") ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") How to name x and y axes in Pandas plot?
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with named axes ax = df.plot() ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") Pandas plot xlabel ylabel without matplotlib
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with labels without directly importing matplotlib ax = df.plot() ax.set_xlabel("X-axis Label", fontsize=14) ax.set_ylabel("Y-axis Label", fontsize=14) How to add labels to a Pandas plot without using plt?
plt for labeling to stick to Pandas-only solutions.import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with labels without using plt ax = df.plot() ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") Pandas plot with custom x and y axis labels
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with custom axis labels ax = df.plot() ax.set_xlabel("Custom X-label") ax.set_ylabel("Custom Y-label") How to add axis labels in Pandas plot with style?
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with styled axis labels ax = df.plot() ax.set_xlabel("X-axis Label", fontsize=14, color='blue') ax.set_ylabel("Y-axis Label", fontsize=14, color='green') Pandas plot add labels best practices
import pandas as pd # Sample data data = {'x': [1, 2, 3, 4, 5], 'y': [2, 3, 5, 7, 11]} df = pd.DataFrame(data) # Plotting with best practices for labels ax = df.plot() ax.set_xlabel("X-axis Label") ax.set_ylabel("Y-axis Label") watch patch organization dapper strftime datasource rhel7 database-partitioning css-tables sql-delete