Convert Pandas Series to DateTime in a DataFrame

Convert Pandas Series to DateTime in a DataFrame

To convert a Pandas Series to a DateTime column in a DataFrame, you can use the pd.to_datetime() function and assign the result to a new column in the DataFrame. Here's how to do it:

Let's say you have a DataFrame df with a column named 'date_column' containing date strings that you want to convert to DateTime:

import pandas as pd # Sample DataFrame data = {'date_column': ['2023-08-29', '2023-08-30', '2023-08-31']} df = pd.DataFrame(data) # Convert the 'date_column' to DateTime df['date_column'] = pd.to_datetime(df['date_column']) # Print the DataFrame print(df) 

In this example, the pd.to_datetime() function converts the strings in the 'date_column' column to DateTime objects, and the result is assigned back to the same column in the DataFrame. The 'date_column' column will now contain DateTime values.

The resulting DataFrame will look like:

 date_column 0 2023-08-29 1 2023-08-30 2 2023-08-31 

Make sure that the strings in the column follow a format that Pandas can interpret as dates. If you need to specify a custom date format, you can use the format parameter of pd.to_datetime().

Examples

  1. Convert Pandas Series to DateTime in a DataFrame using pd.to_datetime():

    • Description: Utilize the pd.to_datetime() function to convert a Pandas Series to DateTime format within a DataFrame.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame using pd.to_datetime() df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column']) 
  2. Convert Pandas Series to DateTime in a DataFrame with custom date format:

    • Description: Convert a Pandas Series to DateTime format within a DataFrame by specifying a custom date format.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with custom date format df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column'], format='%Y-%m-%d %H:%M:%S') 
  3. Convert Pandas Series to DateTime in a DataFrame with timezone conversion:

    • Description: Convert a Pandas Series to DateTime format within a DataFrame and adjust for timezone differences.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with timezone conversion df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column']).dt.tz_localize('UTC').dt.tz_convert('America/New_York') 
  4. Convert Pandas Series to DateTime in a DataFrame with handling errors:

    • Description: Convert a Pandas Series to DateTime format within a DataFrame while handling errors gracefully.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with handling errors df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column'], errors='coerce') 
  5. Convert Pandas Series to DateTime in a DataFrame with Unix timestamps:

    • Description: Convert a Pandas Series containing Unix timestamps to DateTime format within a DataFrame.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with Unix timestamps df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column'], unit='s') 
  6. Convert Pandas Series to DateTime in a DataFrame with combining date and time columns:

    • Description: Merge separate date and time columns into a single DateTime column within a DataFrame.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with combining date and time columns df['DateTime_Column'] = pd.to_datetime(df['Date_Column'] + ' ' + df['Time_Column']) 
  7. Convert Pandas Series to DateTime in a DataFrame with timezone awareness:

    • Description: Ensure DateTime conversion in a DataFrame retains timezone awareness.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with timezone awareness df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column']).dt.tz_localize('UTC') 
  8. Convert Pandas Series to DateTime in a DataFrame with week start day:

    • Description: Specify the week start day while converting a Pandas Series to DateTime format within a DataFrame.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with week start day df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column'], format='%Y-%m-%d', origin='start') 
  9. Convert Pandas Series to DateTime in a DataFrame with date parsing:

    • Description: Convert a Pandas Series to DateTime format within a DataFrame by parsing the dates.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with date parsing df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column'], infer_datetime_format=True) 
  10. Convert Pandas Series to DateTime in a DataFrame with rounding to nearest unit:

    • Description: Round the converted DateTime values to the nearest unit (e.g., day, hour) within a DataFrame.
    • Code:
      import pandas as pd # Convert Pandas Series to DateTime in a DataFrame with rounding to nearest unit df['DateTime_Column'] = pd.to_datetime(df['DateTime_Column']).dt.round('H') 

More Tags

directory-structure mime-types facebook-fql ssh-keys bootstrap-select xsd powerbi-desktop positional-argument android-glide animationutils

More Python Questions

More Mixtures and solutions Calculators

More Dog Calculators

More Housing Building Calculators

More Statistics Calculators