Creating a 3D plot from a 3D numpy array

Creating a 3D plot from a 3D numpy array

To create a 3D plot from a 3D NumPy array, you can use the matplotlib library, which provides tools for creating various types of plots, including 3D plots. Here's how you can create a simple 3D surface plot using matplotlib:

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Create a 3D NumPy array (for example, a 3D surface) x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Create a 3D plot fig = plt.figure() ax = fig.gca(projection='3d') # Plot the surface surf = ax.plot_surface(X, Y, Z, cmap='viridis') # Add color bar which maps values to colors fig.colorbar(surf) # Set labels for the axes ax.set_xlabel('X-axis') ax.set_ylabel('Y-axis') ax.set_zlabel('Z-axis') # Show the plot plt.show() 

In this example:

  1. We first create a 3D NumPy array, Z, which represents a surface defined by the equation Z = sin(sqrt(X^2 + Y^2)). This array is defined over a grid of X and Y values.

  2. We create a matplotlib 3D plot by creating a figure and a 3D axis object.

  3. We use the plot_surface function to plot the surface defined by the X, Y, and Z arrays.

  4. We add a color bar to the plot to show how the color corresponds to the Z values.

  5. We set labels for the X, Y, and Z axes.

  6. Finally, we use plt.show() to display the 3D plot.

You can customize the X, Y, and Z arrays and adjust the appearance of the plot according to your specific data and requirements.

Examples

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate a sample 3D numpy array x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 
      import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate a sample 3D numpy array x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Plotting the 3D surface fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 
        import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Assuming 'array_3d' is the 3D numpy array to visualize array_3d = np.random.rand(10, 10, 10) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x, y, z = array_3d.nonzero() ax.scatter(x, y, z, c=array_3d[x, y, z], cmap='viridis') plt.show() 
          import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate a sample 3D numpy array x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 
            import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Assuming 'array_3d' is the 3D numpy array to visualize array_3d = np.random.rand(10, 10, 10) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x, y, z = array_3d.nonzero() ax.scatter(x, y, z, c=array_3d[x, y, z], cmap='viridis') plt.show() 
              import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate a sample 3D numpy array x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 
                import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Generate a sample 3D numpy array x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 
                  import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Assuming 'array_3d' is the 3D numpy array to visualize array_3d = np.random.rand(10, 10, 10) # Plotting the 3D numpy array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x, y, z = array_3d.nonzero() ax.scatter(x, y, z, c=array_3d[x, y, z], cmap='viridis') plt.show() 

                    More Tags

                    spring-cloud-config mailchimp-api-v3.0 ca matplotlib-3d svnignore zip4j url-pattern depth-first-search websecurity searching

                    More Python Questions

                    More Retirement Calculators

                    More Tax and Salary Calculators

                    More Internet Calculators

                    More Statistics Calculators