Creating Pandas Dataframe between two Numpy arrays, then draw scatter plot

Creating Pandas Dataframe between two Numpy arrays, then draw scatter plot

To create a Pandas DataFrame from two NumPy arrays and then draw a scatter plot, you can follow these steps:

  • Import the necessary libraries:
import numpy as np import pandas as pd import matplotlib.pyplot as plt 
  • Create two NumPy arrays with your data:
# Sample data x_data = np.array([1, 2, 3, 4, 5]) y_data = np.array([5, 7, 8, 10, 12]) 
  • Create a Pandas DataFrame using the two NumPy arrays:
# Create a DataFrame data = {'x': x_data, 'y': y_data} df = pd.DataFrame(data) 
  • Draw a scatter plot using the Pandas DataFrame and Matplotlib:
# Create a scatter plot plt.scatter(df['x'], df['y']) plt.title('Scatter Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.show() 

Here's the complete code together:

import numpy as np import pandas as pd import matplotlib.pyplot as plt # Sample data x_data = np.array([1, 2, 3, 4, 5]) y_data = np.array([5, 7, 8, 10, 12]) # Create a DataFrame data = {'x': x_data, 'y': y_data} df = pd.DataFrame(data) # Create a scatter plot plt.scatter(df['x'], df['y']) plt.title('Scatter Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.show() 

This code will create a scatter plot using the values from the Pandas DataFrame. Make sure to adjust the x_data and y_data arrays with your actual data.

Examples

  1. "Create Pandas DataFrame from two Numpy arrays"

    • Description: This query would likely lead to tutorials or documentation explaining how to construct a Pandas DataFrame using two Numpy arrays.
    • Code:
    import pandas as pd import numpy as np # Sample numpy arrays array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([10, 20, 30, 40, 50]) # Create DataFrame from numpy arrays df = pd.DataFrame({'Column1': array1, 'Column2': array2}) print(df) 
  2. "Pandas DataFrame from two Numpy arrays example"

    • Description: This search might yield examples demonstrating the process of creating a Pandas DataFrame from two Numpy arrays.
    • Code:
    import pandas as pd import numpy as np # Sample numpy arrays array1 = np.arange(10) array2 = np.random.rand(10) # Create DataFrame from numpy arrays df = pd.DataFrame({'Column1': array1, 'Column2': array2}) print(df) 
  3. "Convert Numpy arrays to Pandas DataFrame for scatter plot"

    • Description: This query could lead to resources discussing the conversion of Numpy arrays into a Pandas DataFrame specifically for creating scatter plots.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays x = np.random.rand(50) y = np.random.rand(50) # Create DataFrame from numpy arrays df = pd.DataFrame({'X': x, 'Y': y}) # Scatter plot using DataFrame plt.scatter(df['X'], df['Y']) plt.xlabel('X') plt.ylabel('Y') plt.title('Scatter Plot') plt.show() 
  4. "Draw scatter plot from Pandas DataFrame with Numpy arrays"

    • Description: This query might lead to guides or tutorials on how to draw scatter plots using Pandas DataFrames created from Numpy arrays.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays x = np.linspace(0, 10, 50) y = np.sin(x) # Create DataFrame from numpy arrays df = pd.DataFrame({'X': x, 'Y': y}) # Scatter plot using DataFrame df.plot.scatter(x='X', y='Y') plt.title('Scatter Plot') plt.show() 
  5. "Create Pandas DataFrame with Numpy arrays for scatter plot visualization"

    • Description: This query may lead to resources providing guidelines on how to use Pandas DataFrames constructed from Numpy arrays for scatter plot visualizations.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays array1 = np.random.rand(100) array2 = np.random.rand(100) # Create DataFrame from numpy arrays df = pd.DataFrame({'Column1': array1, 'Column2': array2}) # Scatter plot using DataFrame plt.scatter(df['Column1'], df['Column2']) plt.xlabel('Column1') plt.ylabel('Column2') plt.title('Scatter Plot') plt.show() 
  6. "Generate scatter plot from Pandas DataFrame created with Numpy arrays"

    • Description: This query might lead to resources explaining how to generate scatter plots from Pandas DataFrames generated using Numpy arrays.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays x = np.linspace(0, 10, 50) y = np.cos(x) # Create DataFrame from numpy arrays df = pd.DataFrame({'X': x, 'Y': y}) # Scatter plot using DataFrame plt.scatter(df['X'], df['Y']) plt.title('Scatter Plot') plt.xlabel('X') plt.ylabel('Y') plt.show() 
  7. "Numpy arrays to Pandas DataFrame conversion for scatter plot"

    • Description: This query might lead to discussions or tutorials explaining the conversion of Numpy arrays to Pandas DataFrame specifically for creating scatter plots.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays x = np.random.rand(50) y = np.random.rand(50) # Create DataFrame from numpy arrays df = pd.DataFrame({'X': x, 'Y': y}) # Scatter plot using DataFrame plt.scatter(df['X'], df['Y']) plt.xlabel('X') plt.ylabel('Y') plt.title('Scatter Plot') plt.show() 
  8. "Pandas DataFrame scatter plot with Numpy arrays example"

    • Description: This search query may lead to examples illustrating how to create scatter plots using Pandas DataFrames constructed from Numpy arrays.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays array1 = np.random.rand(50) array2 = np.random.rand(50) # Create DataFrame from numpy arrays df = pd.DataFrame({'Column1': array1, 'Column2': array2}) # Scatter plot using DataFrame df.plot.scatter(x='Column1', y='Column2') plt.title('Scatter Plot') plt.show() 
  9. "Scatter plot visualization using Pandas DataFrame from Numpy arrays"

    • Description: This query might lead to resources discussing the visualization of scatter plots using Pandas DataFrames generated from Numpy arrays.
    • Code:
    import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample numpy arrays x = np.linspace(0, 10, 50) y = np.exp(x) # Create DataFrame from numpy arrays df = pd.DataFrame({'X': x, 'Y': y}) # Scatter plot using DataFrame plt.scatter(df['X'], df['Y']) plt.title('Scatter Plot') plt.xlabel('X') plt.ylabel('Y') plt.show() 

More Tags

cors-anywhere angular2-pipe subclassing physics trendline packaging window android-app-bundle dompdf one-to-many

More Python Questions

More Entertainment Anecdotes Calculators

More Everyday Utility Calculators

More Internet Calculators

More Retirement Calculators