Display regression equation in seaborn regplot

Display regression equation in seaborn regplot

The seaborn library's regplot function doesn't directly provide an option to display the regression equation on the plot itself. However, you can manually calculate the regression coefficients and create a text annotation to display the equation on the plot.

Here's how you can achieve this:

import numpy as np import seaborn as sns import matplotlib.pyplot as plt # Sample data x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 4, 5, 4, 5]) # Create a scatter plot with regression line sns.regplot(x=x, y=y) # Calculate regression coefficients coefficients = np.polyfit(x, y, 1) slope = coefficients[0] intercept = coefficients[1] # Create the regression equation string equation = f'y = {slope:.2f}x + {intercept:.2f}' # Add the equation as a text annotation on the plot plt.annotate(equation, (0.5, 0.9), xycoords='axes fraction', fontsize=12) # Show the plot plt.show() 

In this example, we first create a scatter plot with a regression line using seaborn's regplot function. Then, we calculate the regression coefficients using np.polyfit(). Next, we create a string for the regression equation using f-strings. Finally, we use plt.annotate() to add the equation as a text annotation on the plot at a specified position.

Remember to adjust the position and formatting of the annotation to match your specific plot's style.

Examples

  1. "Seaborn regplot display regression equation" Description: Explore how to display the regression equation on a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Retrieve regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 
  2. "Seaborn regplot show equation" Description: Learn how to show the regression equation on a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line and display equation sns.regplot(x=x, y=y, scatter_kws={"color": "blue"}, line_kws={"color": "red"}) plt.annotate('y = mx + b', xy=(3, 4), fontsize=12, color='green') plt.show() 
  3. "Seaborn regplot add regression equation" Description: Understand how to add the regression equation to a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Get regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 
  4. "Seaborn regplot annotate regression line" Description: Learn how to annotate the regression line with its equation on a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Get regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Annotate equation on the plot plt.annotate(f'y = {slope:.2f}x + {intercept:.2f}', xy=(3, 4), fontsize=12) plt.show() 
  5. "Seaborn regplot regression line equation" Description: Find out how to display the regression line equation on a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Retrieve regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 
  6. "Seaborn regplot regression equation display" Description: Understand how to display the regression equation on a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Get regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 
  7. "Seaborn regplot plot with regression equation" Description: Learn how to plot a seaborn regplot with the regression equation.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Get regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 
  8. "Seaborn regplot include regression equation" Description: Understand how to include the regression equation in a seaborn regplot.

    import seaborn as sns import matplotlib.pyplot as plt # Generate sample data x = [1, 2, 3, 4, 5] y = [2, 4, 5, 4, 5] # Create regplot with regression line sns.regplot(x=x, y=y) # Get regression parameters slope, intercept = sns.regplot(x=x, y=y).get_lines()[0].get_data() # Display equation on the plot plt.text(3, 4, f'y = {slope:.2f}x + {intercept:.2f}', fontsize=12) plt.show() 

More Tags

datagridview intel-edison html-input ntp hide crashlytics kettle axios pos-for-.net django-manage.py

More Python Questions

More Bio laboratory Calculators

More Various Measurements Units Calculators

More Animal pregnancy Calculators

More Retirement Calculators