In Matplotlib's imshow function, the extent parameter is used to specify the bounding box of the image data in data coordinates, and the aspect parameter is used to control the aspect ratio of the displayed image.
Here's how you can use both extent and aspect in imshow:
extent Parameter:
The extent parameter allows you to specify the extent (bounding box) of the image in data coordinates. It is a tuple (left, right, bottom, top) that defines the left, right, bottom, and top edges of the image. This parameter is particularly useful when you want to display an image with non-standard axis limits.
import matplotlib.pyplot as plt import numpy as np # Create some sample data data = np.random.rand(5, 5) # Define the extent (left, right, bottom, top) in data coordinates extent = (0, 10, 0, 5) # Display the image using imshow with extent plt.imshow(data, extent=extent) # Show the plot plt.show()
aspect Parameter:
The aspect parameter allows you to control the aspect ratio of the displayed image. By default, aspect='auto', which automatically adjusts the aspect ratio to fit the figure size. You can also set it to a specific value, such as 'equal' for a square aspect ratio.
import matplotlib.pyplot as plt import numpy as np # Create some sample data data = np.random.rand(5, 5) # Display the image with a square aspect ratio plt.imshow(data, aspect='equal') # Show the plot plt.show()
You can set aspect to a numerical value to control the aspect ratio manually. For example, aspect=2 would make the height twice as large as the width.
plt.imshow(data, aspect=2)
Using extent and aspect in combination allows you to control both the position and aspect ratio of the image within the plot. Adjust the values of extent and aspect to suit your specific requirements for displaying image data.
"imshow extent and aspect ratio in matplotlib"
imshow function.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with custom extent and aspect ratio plt.imshow(data, extent=[0, 2, 0, 1], aspect='auto') plt.colorbar() plt.show()
"imshow aspect ratio in Python"
imshow.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with a fixed aspect ratio plt.imshow(data, aspect=2) plt.colorbar() plt.show()
"how to change imshow extent in Matplotlib"
imshow function to display images.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with a custom extent plt.imshow(data, extent=[0, 1, 0, 2]) plt.colorbar() plt.show()
"matplotlib imshow maintain aspect ratio"
imshow.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with aspect ratio maintained plt.imshow(data, aspect='auto') plt.colorbar() plt.show()
"imshow extent in Python example"
imshow function.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with a custom extent plt.imshow(data, extent=[0, 10, 0, 5]) plt.colorbar() plt.show()
"matplotlib imshow custom extent and aspect ratio"
imshow.import matplotlib.pyplot as plt import numpy as np # Create a sample image data = np.random.rand(10, 10) # Display the image with custom extent and aspect ratio plt.imshow(data, extent=[0, 20, 0, 10], aspect=0.5) plt.colorbar() plt.show()
sendgrid parquet compass spring-config popper.js react-component regex-negation negative-number windows-mobile colorbar