If you want to find the indices of the elements that are common to two NumPy arrays, you can use the numpy.intersect1d() function. Here's how you can do it:
import numpy as np # Create two NumPy arrays array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) # Find the intersection of the two arrays and get the indices intersection_indices = np.where(np.in1d(array1, array2))[0] # Print the intersection indices print(intersection_indices)
In this example:
We import NumPy as np.
We create two NumPy arrays, array1 and array2, with some overlapping elements.
We use np.in1d(array1, array2) to find a boolean mask indicating which elements of array1 are present in array2.
We use np.where() to get the indices of True values in the boolean mask.
The intersection_indices array will contain the indices of the elements that are common to both array1 and array2.
When you run this code, you will get the indices of the common elements in the intersection_indices array. In this example, it will be [2, 3, 4], which correspond to the elements 3, 4, and 5 in both arrays.
How to find the intersection of two numpy arrays?
numpy.intersect1d() function. It returns the sorted intersection of the arrays.import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) intersection = np.intersect1d(array1, array2) print("Intersection:", intersection) # Output: [3, 4, 5] How to get the indices of the intersection in the original numpy arrays?
return_indices parameter with numpy.intersect1d().import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) intersection, indices1, indices2 = np.intersect1d(array1, array2, return_indices=True) print("Intersection:", intersection) # Output: [3, 4, 5] print("Indices in array1:", indices1) # Output: [2, 3, 4] print("Indices in array2:", indices2) # Output: [0, 1, 2] How to find the intersection of multiple numpy arrays?
numpy.intersect1d() on each pair of arrays.import numpy as np arrays = [ np.array([1, 2, 3, 4, 5]), np.array([3, 4, 5, 6, 7]), np.array([5, 6, 7, 8, 9]), ] intersection = arrays[0] for array in arrays[1:]: intersection = np.intersect1d(intersection, array) print("Intersection of multiple arrays:", intersection) # Output: [5] How to find the union of two numpy arrays without duplicates?
numpy.union1d() function. This returns a sorted union of the arrays.import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) union = np.union1d(array1, array2) print("Union:", union) # Output: [1, 2, 3, 4, 5, 6, 7] How to get the indices of unique elements in a numpy array?
numpy.unique() with the return_index parameter to get the indices of the first occurrences.import numpy as np array = np.array([1, 2, 3, 1, 4, 5, 3]) unique_elements, unique_indices = np.unique(array, return_index=True) print("Unique elements:", unique_elements) # Output: [1, 2, 3, 4, 5] print("Indices of unique elements:", unique_indices) # Output: [0, 1, 2, 4, 5] How to find the difference between two numpy arrays?
numpy.setdiff1d() function. This returns elements in the first array that are not in the second.import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) difference = np.setdiff1d(array1, array2) print("Difference:", difference) # Output: [1, 2] How to find the symmetric difference between two numpy arrays?
numpy.setxor1d().import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([3, 4, 5, 6, 7]) symmetric_difference = np.setxor1d(array1, array2) print("Symmetric difference:", symmetric_difference) # Output: [1, 2, 6, 7] How to check if a numpy array contains all unique elements?
numpy.unique() with the length of the original array.import numpy as np array = np.array([1, 2, 3, 4, 5, 3]) all_unique = len(np.unique(array)) == len(array) print("All elements unique:", all_unique) # Output: False How to find the indices of common elements in numpy arrays of different shapes?
numpy.intersect1d() with proper reshaping to get the indices of common elements.import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([3, 4, 5, 6, 7]) flat_array1 = array1.flatten() # Flatten the 2D array to 1D intersection, indices1, indices2 = np.intersect1d(flat_array1, array2, return_indices=True) print("Intersection:", intersection) # Output: [3, 4] print("Indices in flat_array1:", indices1) # Output: [2, 3] How to check if two numpy arrays are identical?
simplejson motion-detection jsonconvert jacoco-maven-plugin greasemonkey virtualenv ngxs indicator paginator codeigniter