You can group a datetime column in a Pandas DataFrame into hour and minute aggregations using the groupby function along with the DatetimeIndex.hour and DatetimeIndex.minute attributes. Here's an example:
import pandas as pd # Create a sample DataFrame with a datetime column data = {'Datetime': ['2023-09-15 08:15:00', '2023-09-15 08:30:00', '2023-09-15 09:45:00', '2023-09-15 09:15:00', '2023-09-15 10:30:00'], 'Value': [10, 20, 15, 25, 30]} df = pd.DataFrame(data) df['Datetime'] = pd.to_datetime(df['Datetime']) # Convert to datetime format # Group by hour and calculate the sum of 'Value' hourly_aggregation = df.groupby(df['Datetime'].dt.hour)['Value'].sum() # Group by minute and calculate the mean of 'Value' minute_aggregation = df.groupby(df['Datetime'].dt.minute)['Value'].mean() print("Hourly Aggregation:") print(hourly_aggregation) print("\nMinute Aggregation:") print(minute_aggregation) In this example:
We create a sample DataFrame with a datetime column named "Datetime" and a "Value" column.
We convert the "Datetime" column to a datetime format using pd.to_datetime().
We group the DataFrame by the hour and calculate the sum of the "Value" column for each hour using groupby and sum.
We group the DataFrame by the minute and calculate the mean of the "Value" column for each minute using groupby and mean.
You can modify the aggregation functions (e.g., sum, mean, count, etc.) to perform different calculations on the grouped data based on your requirements.
How to group by hour in Pandas with datetime column?
dt.hour attribute on a datetime column, followed by an aggregation like sum() or count().import pandas as pd df = pd.DataFrame({ 'timestamp': ['2023-04-21 10:15:00', '2023-04-21 10:45:00', '2023-04-21 11:30:00'], 'value': [10, 20, 30] }) df['timestamp'] = pd.to_datetime(df['timestamp']) hourly_group = df.groupby(df['timestamp'].dt.hour).sum() print(hourly_group) # Output: # value # hour # 10 30 # 11 30 How to group by minute in Pandas with datetime column?
df = pd.DataFrame({ 'timestamp': ['2023-04-21 10:15:00', '2023-04-21 10:45:00', '2023-04-21 11:15:00'], 'value': [10, 20, 30] }) df['timestamp'] = pd.to_datetime(df['timestamp']) minute_group = df.groupby(df['timestamp'].dt.minute).sum() print(minute_group) # Output: # value # minute # 15 40 # 45 20 How to group by hour and minute in Pandas?
dt.hour and dt.minute attributes.df = pd.DataFrame({ 'timestamp': ['2023-04-21 10:15:00', '2023-04-21 10:45:00', '2023-04-21 11:15:00'], 'value': [10, 20, 30] }) df['timestamp'] = pd.to_datetime(df['timestamp']) hour_minute_group = df.groupby((df['timestamp'].dt.hour, df['timestamp'].dt.minute)).sum() print(hour_minute_group) # Output: # value # (10, 15) 10 # (10, 45) 20 # (11, 15) 30 How to group by specific minute intervals in Pandas?
df = pd.DataFrame({ 'timestamp': ['2023-04-21 10:15:00', '2023-04-21 10:45:00', '2023-04-21 11:15:00', '2023-04-21 10:25:00'], 'value': [10, 20, 30, 40] }) df['timestamp'] = pd.to_datetime(df['timestamp']) df['rounded'] = df['timestamp'].dt.floor('30min') # Rounds down to the nearest 30 minutes interval_group = df.groupby('rounded').sum() print(interval_group) # Output: # value # rounded # 2023-04-21 10:00:00 70 # 2023-04-21 11:00:00 30 How to group by hour and minute in Pandas with multiple aggregations?
agg to perform multiple aggregations on grouped data by hour and minute.df = pd.DataFrame({ 'timestamp': ['2023-04-21 10:15:00', '2023-04-21 10:45:00', '2023-04-21 11:15:00'], 'value': [10, 20, 30] }) df['timestamp'] = pd.to_datetime(df['timestamp']) hour_minute_group = df.groupby((df['timestamp'].dt.hour, df['timestamp'].dt.minute)).agg({ 'value': ['sum', 'count'] }) print(hour_minute_group) # Output: # value # sum count # (10, 15) 10 1 # (10, 45) 20 1 # (11, 15) 30 1 How to group by exact time in Pandas?
exact_time_group = df.groupby('timestamp').sum() print(exact_time_group) # Output: # value # timestamp # 2023-04-21 10:15:00 10 # 2023-04-21 10:45:00 20 # 2023-04-21 11:15:00 30 How to group by time range in Pandas?
df['rounded'] = df['timestamp'].dt.floor('15min') # Rounds down to nearest 15 minutes time_range_group = df.groupby('rounded').sum() print(time_range_group) # Output: # value # rounded # 2023-04-21 10:15:00 30 # 2023-04-21 10:45:00 20 # 2023-04-21 11:15:00 30 How to group by time within specific hours in Pandas?
selected_hours = df[df['timestamp'].dt.hour.between(10, 11)] filtered_group = selected_hours.groupby(selected_hours['timestamp'].dt.hour).sum() print(filtered_group) # Output: # value # hour # 10 30 # 11 30
How to group by time and perform complex aggregations in Pandas?
complex_agg = df.groupby(df['timestamp'].dt.hour).agg({ 'value': ['mean', 'sum', 'nunique'] }) print(complex_agg) # Output: # value # mean sum nunique # hour # 10 15 30 2 # 11 30 30 1 scala-gatling one-hot-encoding autoprefixer zone.js lyx pre-signed-url segue indexing android-widget typeahead