To apply the get_dummies function from the pandas library on several columns of a DataFrame, you can pass a list of column names to the function. This will create dummy variables for each unique value in the specified columns. Here's how to do it:
import pandas as pd # Create a sample DataFrame data = {'Color': ['Red', 'Blue', 'Green', 'Red', 'Blue'], 'Size': ['Small', 'Large', 'Medium', 'Small', 'Medium']} df = pd.DataFrame(data) # Specify the columns for which to create dummy variables columns_to_encode = ['Color', 'Size'] # Apply get_dummies on the specified columns encoded_df = pd.get_dummies(df, columns=columns_to_encode) print(encoded_df) In this example, the get_dummies function is applied to the DataFrame df with the columns 'Color' and 'Size' specified in the columns_to_encode list. The result is a new DataFrame encoded_df with dummy variables created for each unique value in the specified columns.
Keep in mind that the get_dummies function creates binary columns for each unique value, indicating the presence (1) or absence (0) of that value in the original columns.
"Pandas get_dummies multiple columns"
get_dummies function in Pandas.import pandas as pd # DataFrame with multiple columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Get dummies for multiple columns df_encoded = pd.get_dummies(df, columns=['A', 'B']) "One-hot encode specific columns with Pandas get_dummies"
get_dummies to certain columns of a DataFrame.import pandas as pd # DataFrame with columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Get dummies for specific columns df_encoded = pd.get_dummies(df, columns=['A']) "Pandas one-hot encode multiple categorical columns"
import pandas as pd # DataFrame with multiple categorical columns df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # One-hot encode multiple columns df_encoded = pd.get_dummies(df) "Apply get_dummies to multiple columns in Pandas DataFrame"
get_dummies function to more than one column in a Pandas DataFrame.import pandas as pd # DataFrame with columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Apply get_dummies to multiple columns df_encoded = pd.get_dummies(df, columns=['A', 'B']) "Pandas one-hot encoding for several DataFrame columns"
import pandas as pd # DataFrame with multiple columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # One-hot encode several columns df_encoded = pd.get_dummies(df) "Pandas get_dummies for multiple columns with prefix"
get_dummies.import pandas as pd # DataFrame with columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Get dummies for multiple columns with prefix df_encoded = pd.get_dummies(df, prefix=['A', 'B']) "How to one-hot encode multiple columns in Pandas DataFrame?"
import pandas as pd # DataFrame with multiple columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # One-hot encode multiple columns df_encoded = pd.get_dummies(df, columns=['A', 'B']) "Pandas get_dummies for several categorical features"
get_dummies to several categorical features within a DataFrame.import pandas as pd # DataFrame with multiple categorical features df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Get dummies for several categorical features df_encoded = pd.get_dummies(df) "Pandas one-hot encode multiple columns with drop_first"
import pandas as pd # DataFrame with columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # One-hot encode multiple columns with drop_first df_encoded = pd.get_dummies(df, columns=['A', 'B'], drop_first=True) "Apply get_dummies to several DataFrame columns in Python"
get_dummies with multiple columns in a Pandas DataFrame.import pandas as pd # DataFrame with multiple columns to encode df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) # Apply get_dummies to several columns df_encoded = pd.get_dummies(df, columns=['A', 'B']) control-flow connectivity whatsapp tableview password-hash bidirectional poison-queue react-dates date-pipe cube-script