Selecting pandas column by location

Selecting pandas column by location

You can select columns by their location (integer-based index) in a pandas DataFrame using the .iloc[] indexer. Here's how you can do it:

Suppose you have the following DataFrame:

import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) print(df) 
 A B C 0 1 4 7 1 2 5 8 2 3 6 9 

You can select columns by their location using .iloc[]:

# Select the first column (A) by location (integer-based index) column_A = df.iloc[:, 0] # Select the second column (B) by location (integer-based index) column_B = df.iloc[:, 1] # Select the third column (C) by location (integer-based index) column_C = df.iloc[:, 2] print("Column A:") print(column_A) print("\nColumn B:") print(column_B) print("\nColumn C:") print(column_C) 

This code selects each column by its integer-based index (0 for the first column, 1 for the second column, and 2 for the third column) using .iloc[]. You can adjust the column indices to select the specific columns you need.

Examples

  1. How to Select a Pandas Column by Location

    • Description: This query explores how to select a specific column from a Pandas DataFrame using its positional location with the iloc method.

    • Code:

      # Install Pandas if needed !pip install pandas 
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9] } df = pd.DataFrame(data) # Select the second column by its position selected_column = df.iloc[:, 1] # Column at index 1 (second column) print("Selected column by location:", selected_column) # Output: [4, 5, 6] 
  2. Selecting Multiple Pandas Columns by Location

    • Description: This query discusses how to select multiple columns from a Pandas DataFrame by their positional location using iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'X': [10, 20, 30], 'Y': [40, 50, 60], 'Z': [70, 80, 90], 'W': [100, 110, 120] } df = pd.DataFrame(data) # Select the first and third columns by their location selected_columns = df.iloc[:, [0, 2]] print("Selected columns by location:", selected_columns) 
  3. Selecting a Range of Columns from a Pandas DataFrame by Location

    • Description: This query explores how to select a range of columns from a Pandas DataFrame using their positional location with iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12], 'E': [13, 14, 15] } df = pd.DataFrame(data) # Select a range of columns from the second to the fourth selected_columns = df.iloc[:, 1:4] # Columns at indices 1 to 3 print("Selected range of columns by location:", selected_columns) 
  4. Selecting a Pandas Column by Negative Index in Location

    • Description: This query explores how to select a specific column from a Pandas DataFrame using a negative index with iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12] } df = pd.DataFrame(data) # Select the last column using a negative index selected_column = df.iloc[:, -1] # Last column print("Selected column by negative index:", selected_column) 
  5. Selecting Every nth Pandas Column by Location

    • Description: This query explores how to select every nth column from a Pandas DataFrame using positional location with iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12], 'E': [13, 14, 15] } df = pd.DataFrame(data) # Select every second column selected_columns = df.iloc[:, ::2] # Select every second column print("Every second column:", selected_columns) 
  6. Selecting Pandas Columns by Location with a Custom Step

    • Description: This query explores how to select columns from a Pandas DataFrame with a custom step using positional location with iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'Col1': [1, 2, 3], 'Col2': [4, 5, 6], 'Col3': [7, 8, 9], 'Col4': [10, 11, 12], 'Col5': [13, 14, 15] } df = pd.DataFrame(data) # Select columns with a custom step (every third column) selected_columns = df.iloc[:, ::3] # Select every third column print("Selected columns with a custom step:", selected_columns) 
  7. Selecting Pandas Columns by Location with Exclusion

    • Description: This query discusses how to select all columns except for a specific one, using positional location with iloc.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12] } df = pd.DataFrame(data) # Exclude the second column selected_columns = df.iloc[:, [0, 2, 3]] # Keep all except the second column print("Selected columns excluding the second:", selected_columns) 
  8. Selecting Pandas Columns by Location and Applying Operations

    • Description: This query explores how to select columns from a Pandas DataFrame by location and apply operations or transformations.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12] } df = pd.DataFrame(data) # Select the first two columns and apply a transformation (e.g., multiply by 2) selected_columns = df.iloc[:, :2] * 2 # Select and double the values print("Selected columns with operations:", selected_columns) 
  9. Selecting Pandas Columns by Location and Converting to a List

    • Description: This query explores how to select specific columns from a Pandas DataFrame by location and convert them to a list of lists.
    • Code:
      import pandas as pd # Create a sample DataFrame data = { 'X': [10, 20, 30], 'Y': [40, 50, 60], 'Z': [70, 80, 90], 'W': [100, 110, 120] } df = pd.DataFrame(data) # Select the last two columns and convert to a list of lists selected_columns = df.iloc[:, -2:].values.tolist() # Convert to list of lists print("Selected columns as list of lists:", selected_columns) 
  10. Selecting Pandas Columns by Location and Checking for Missing Columns


More Tags

code-first android-livedata primeng-turbotable android-fileprovider user-input header euro timestamp-with-timezone placeholder undefined-reference

More Python Questions

More Fitness-Health Calculators

More Financial Calculators

More Electronics Circuits Calculators

More Dog Calculators