To run Spark code in Apache Airflow, you typically use the SparkSubmitOperator, which allows you to submit Spark applications from Airflow DAGs. This operator leverages Apache Spark's spark-submit command-line tool to launch Spark jobs.
Here's a step-by-step guide to setting up and running Spark code in Airflow using the SparkSubmitOperator:
Ensure you have the necessary Airflow plugins installed. You may need to install apache-airflow-providers-apache-spark plugin:
pip install apache-airflow-providers-apache-spark
Create an Airflow DAG file (e.g., spark_job_dag.py) and define your DAG configuration along with the SparkSubmitOperator.
from airflow import DAG from airflow.providers.apache.spark.operators.spark_submit import SparkSubmitOperator from datetime import datetime # Define your SparkSubmitOperator task spark_job_task = SparkSubmitOperator( task_id='spark_job_task', conn_id='spark_default', # Airflow connection ID for Spark cluster (defined in Airflow UI) application='/path/to/your/spark/application.py', # Path to your Spark application file name='YourSparkJobName', total_executor_cores='2', # Number of executor cores executor_cores='2', # Number of cores per executor executor_memory='2g', # Memory allocated for each executor driver_memory='1g', # Memory allocated for driver (your SparkContext) verbose=True, # Optional: Set to True for verbose logging dag=dag, # Pass your DAG object ) # Define your Airflow DAG dag = DAG( dag_id='spark_job_dag', default_args={ 'owner': 'airflow', 'start_date': datetime(2024, 1, 1), 'retries': 1, }, schedule_interval=None, # Set your schedule interval or None for manual triggering ) # Define task dependencies if needed # For example: # spark_job_task >> another_task # Optionally, define downstream tasks Ensure you have configured a Spark connection in Airflow:
spark_default (or any name you prefer)Sparkspark://localhost:7077){"key": "value"})Once everything is set up:
spark_job_dag.py) in Airflow's DAG directory.Spark Application Path: Ensure that the application parameter in SparkSubmitOperator points to the correct path of your Spark application code (JAR file, Python script, etc.).
Configuration: Adjust executor_cores, executor_memory, driver_memory, and other parameters according to your Spark job requirements.
Dependencies: Make sure all necessary dependencies for your Spark job are available in the Spark cluster environment where Airflow will submit the job.
This setup allows you to integrate Spark jobs seamlessly into your Airflow workflows, leveraging Airflow's scheduling, monitoring, and dependency management capabilities. Adjust configurations and parameters based on your specific Spark job requirements and environment setup.
How to set up Airflow to run Spark jobs in Java?
from airflow import DAG from airflow.providers.apache.spark.operators.spark_submit import SparkSubmitOperator from datetime import datetime default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 1 } with DAG('spark_job_dag', default_args=default_args, schedule_interval='@daily', catchup=False) as dag: spark_submit_task = SparkSubmitOperator( task_id='spark_submit_task', application='/path/to/your/java/spark/app.jar', java_class='com.yourcompany.YourSparkApp', conn_id='spark_default', application_args=['arg1', 'arg2'], name='spark_job' ) spark_submit_task How to configure Spark connection in Airflow?
# In Airflow web UI, navigate to Admin -> Connections # Add a new connection with the following details: # Conn Id: spark_default # Conn Type: Spark # Host: spark://your-spark-master:7077 # Extra: {"queue": "default"} How to pass arguments to Spark job in Airflow?
application_args parameter.spark_submit_task = SparkSubmitOperator( task_id='spark_submit_task', application='/path/to/your/java/spark/app.jar', java_class='com.yourcompany.YourSparkApp', conn_id='spark_default', application_args=['arg1', 'arg2'], name='spark_job' )
How to manage Spark job dependencies in Airflow?
task1 = SparkSubmitOperator( task_id='spark_task_1', application='/path/to/app1.jar', java_class='com.yourcompany.App1', conn_id='spark_default', name='spark_job_1' ) task2 = SparkSubmitOperator( task_id='spark_task_2', application='/path/to/app2.jar', java_class='com.yourcompany.App2', conn_id='spark_default', name='spark_job_2' ) task1 >> task2
How to monitor Spark jobs in Airflow?
# After triggering the DAG in the Airflow UI, # navigate to the DAG's graph view to see the task status. # Click on a task to view logs and monitor job execution.
How to handle Spark job failures in Airflow?
from airflow import DAG from airflow.providers.apache.spark.operators.spark_submit import SparkSubmitOperator from datetime import datetime def failure_callback(context): print("Spark job failed:", context) default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 3, 'retry_delay': timedelta(minutes=5), 'on_failure_callback': failure_callback } with DAG('spark_job_dag', default_args=default_args, schedule_interval='@daily', catchup=False) as dag: spark_submit_task = SparkSubmitOperator( task_id='spark_submit_task', application='/path/to/your/java/spark/app.jar', java_class='com.yourcompany.YourSparkApp', conn_id='spark_default', application_args=['arg1', 'arg2'], name='spark_job' ) spark_submit_task How to run Spark jobs on a Kubernetes cluster from Airflow?
from airflow import DAG from airflow.providers.apache.spark.operators.spark_kubernetes import SparkKubernetesOperator from datetime import datetime default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 1 } with DAG('spark_k8s_dag', default_args=default_args, schedule_interval='@daily', catchup=False) as dag: spark_k8s_task = SparkKubernetesOperator( task_id='spark_k8s_task', namespace='default', application_file='/path/to/spark-application.yaml', kubernetes_conn_id='k8s_default', do_xcom_push=True ) spark_k8s_task How to set Spark configuration properties in Airflow?
conf parameter in SparkSubmitOperator.spark_submit_task = SparkSubmitOperator( task_id='spark_submit_task', application='/path/to/your/java/spark/app.jar', java_class='com.yourcompany.YourSparkApp', conn_id='spark_default', conf={ 'spark.executor.memory': '4g', 'spark.executor.cores': '2' }, name='spark_job' ) How to run Spark jobs using Airflow DockerOperator?
from airflow import DAG from airflow.operators.docker_operator import DockerOperator from datetime import datetime default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 1 } with DAG('docker_spark_dag', default_args=default_args, schedule_interval='@daily', catchup=False) as dag: docker_spark_task = DockerOperator( task_id='docker_spark_task', image='spark:latest', api_version='auto', auto_remove=True, command='/spark/bin/spark-submit --class com.yourcompany.YourSparkApp /path/to/your/app.jar', docker_url='unix://var/run/docker.sock', network_mode='bridge' ) docker_spark_task How to use Spark with Airflow on Amazon EMR?
from airflow import DAG from airflow.providers.amazon.aws.operators.emr_add_steps import EmrAddStepsOperator from airflow.providers.amazon.aws.sensors.emr_step import EmrStepSensor from datetime import datetime default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 1 } SPARK_STEPS = [ { 'Name': 'setup - copy files', 'ActionOnFailure': 'CONTINUE', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': ['aws', 's3', 'cp', 's3://my-bucket/my-app.jar', '/home/hadoop/'] } }, { 'Name': 'run-spark-step', 'ActionOnFailure': 'TERMINATE_CLUSTER', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': ['spark-submit', '--class', 'com.yourcompany.YourSparkApp', '/home/hadoop/my-app.jar'] } } ] with DAG('emr_spark_dag', default_args=default_args, schedule_interval='@daily', catchup=False) as dag: add_steps = EmrAddStepsOperator( task_id='add_steps', job_flow_id='{{ task_instance.xcom_pull("create_job_flow") }}', aws_conn_id='aws_default', steps=SPARK_STEPS ) step_checker = EmrStepSensor( task_id='watch_step', job_flow_id='{{ task_instance.xcom_pull("create_job_flow") }}', step_id='{{ task_instance.xcom_pull(task_ids="add_steps", key="return_value")[0] }}', aws_conn_id='aws_default' ) add_steps >> step_checker office365-restapi asyncfileupload urllib strptime angular-observable firebase-cloud-messaging tabview camera-calibration gridpanel jaxb