Creating a Pandas DataFrame with random integers can be done using the numpy library in conjunction with Pandas. Here's how you can generate a DataFrame with random integers:
import pandas as pd import numpy as np # Define the size of the DataFrame rows = 10 # Number of rows cols = 5 # Number of columns # Define the range of the random numbers min_value = 1 max_value = 100 # Create a DataFrame with random integers between min_value and max_value df = pd.DataFrame(np.random.randint(min_value, max_value+1, size=(rows, cols)), columns=[f'Column_{i}' for i in range(1, cols+1)]) print(df) In this script:
rows and cols are the number of rows and columns for the DataFrame.min_value and max_value define the range for the random integers.np.random.randint is used to generate a 2D array of random integers between min_value and max_value inclusive.DataFrame constructor to create the DataFrame.columns=[f'Column_{i}' for i in range(1, cols+1)] creates a list of column names dynamically based on the number of columns.When you run this code, you'll get a DataFrame of the specified size filled with random integers in the given range.
device-manager datetimeoffset remote-host lapply blue-screen-of-death ms-word matplotlib-basemap mtu rows appendchild