
MPI Informatik 1 Kurt Mehlhorn

Data Structures and Graph Algorithms

Shortest Paths

Kurt Mehlhorn

Max-Planck-Institut für Informatik

MPI Informatik 2 Kurt Mehlhorn

Contents

1. the worst case running time of many graph algorithms can be improved by clever

data structures

� priority queues for Dijkstra’s shortest path algorithm O � n2 � � � O � m � n logn �

� dynamic trees for maxflow algorithms O � n2 � m � � � O � nm �

� mergeable priority queues for general weighted matchings

O � n3 � � � O � nm logn �

2. what is the effect on “actual” running times on synthetic and real inputs

� priority queues for Dijkstra’s shortest path algorithm

� dynamic trees for maxflow algorithms

� mergeable priority queues for general weighted matchings

3. how large are the gains and can we explain them ???

MPI Informatik 3 Kurt Mehlhorn

Dijkstra’s Single Source Shortest Path Algorithm

G � � V � E � directed graph, s � V source node, c : E	
 � � 0 edge costs

Dijkstra’s Algorithm
d � s � � 0 and d � v � � ∞ for v
� s; tentative distances

declare all nodes unscanned;

while there is an unscanned node

� let u be the unscanned node with minimal tentative distance;

forall edges e � � u � v � out of u

� C � d � u � � c � e � ;

if (C � d � v �) set d � v � � C;

�

declare u scanned;

�

Dijkstra iterated over all nodes to find the unscanned u with minimal d � u �

running time Θ � n2 � m � it is Θ and not just O !!!!!

Dijkstra’s Algorithm with Priority Queues

the unscanned nodes u with d � u � � ∞ are stored in a priority queue

define a priority queue for the nodes of G; init

set d � s � � 0 and d � v � � ∞ for v
� s and declare all nodes unscanned

PQ� insert � s � 0 � ; insert

while (! PQ � is empty � �) is empty

� select u � PQ with d � u � minimal and remove it; declare u scanned extract min

forall edges e � � u � v �

� if (D � d � u � � c � e � � d � v �)

� if (d � v � � � ∞)

� PQ � insert � v � D � ; // v has been reached � insert

else

� PQ � decrease p � v � D � ; � decrease p

d � v � � D;

�
�

�

Dijkstra’s Algorithm with Priority Queues

define a priority queue for the nodes of G; init

set d � s � � 0 and d � v � � ∞ for v
� s and declare all nodes unscanned

PQ� insert � s � 0 � ; 1 insert

while (! PQ � is empty � �) n is empty

� select u � PQ with d � u � minimal and remove it; declare u scanned n extract min

forall edges e � � u � v �

� if (D � d � u � � c � e � � d � v �)

� if (d � v � � � ∞)

� PQ � insert � v � D � ; // v has been reached � n� 1 insert

else

� PQ � decrease p � v � D � ; � up to m� � n� 1 � decrease p

d � v � � D;

�
�

�

time � Θ � n � m � Tinit � n� � Tis empty � Textract min � Tinsert � � � O � m� Tdecrease p �

MPI Informatik 6 Kurt Mehlhorn

Priority Queue Implementations

time � Θ � n � m � Tinit � n� � Tis empty � Textract min � Tinsert � � � O � m� Tdecrease p �

insert extract min decrease p worst-case T

no data structure 1 n 1 Θ � n2 � m �

binary heaps logn logn logn Θ � n logn � � O � m logn �

Fib heaps logn logn 1 Θ � n log � m �

Fib heaps have larger constant factors than bin heaps

MPI Informatik 7 Kurt Mehlhorn

A Worst-Case Example

c c

j

i� 1 i

i � 1

n� 1

0 1

A worst case graph for Dijkstra’s algorithm. All edges � i � i � 1 � have cost c and an edge

� i � j � with i � 1 � j has cost ci � j . The ci � j are chosen such that the shortest path tree with

root 0 is the path 0 � 1 � � � � � n� 1 and such that the shortest path tree that is known after

removing node i� 1 from the queue is as shown. Among the edges out of node i� 1 the

edge � i� 1 � i) is the shortest, the edge � i� 1 � n� 1 � is the second shortest, and the edge

� i� 1 � i � 1 � is the longest. Every decrease prio makes smallest key in PQ.

source: LEDAbook, Section on priority queues

Experiments [Cherkassky-Goldberg-Radzik, LEDAbook]

Instance f heap p heap k heap bin heap list pq r heap m heap

s,r,S 0.36 0.34 0.35 0.34 0.51 0.33 0.35

s,r,L 0.38 0.36 0.37 0.34 0.54 0.35 0.54

s,w,S 1.86 1.09 3.77 1.38 1 0.76 2.68

s,w,L 1.87 1.1 3.68 1.34 1 0.77 8.49

l,r,S 4.96 3.19 5.2 3.36 - 2.52 2.52

l,r,L 6.61 4.81 6.4 4.49 - 3.76 3.38

l,w,S 3.32 2.56 9.17 3.79 - 1.63 3.11

l,w,L 2.91 1.92 7.65 3.22 - 2.57 2.55

m � 500000 and n � 2000 (s), or n � 200000 (l) nodes.

random graphs (r) with random edge weights in � 0 � � M� 1 � , where M � 100 (S) or

M � 100000 (L),

worst case graphs (w) with c � 0 (S) or c � 10000 (L).

bin heap � list pq and bin heap � fib heap for random graphs and f heap � bin heap for

worst-case graphs with large n

MPI Informatik 9 Kurt Mehlhorn

Noshita’s Average Case Analysis
� G � � V � E � arbitrary directed graph, s source node

� for every v � V let C � v � be a set of non-negative real numbers of cardinality indeg � v � .

� the assignment of the costs in C � v � to the edges into v is made at random, i.e.,

probability space consists of ∏v indeg � v � ! many assignments of edge costs to edges.

� Theorem [Noshita]: The expected number of decrease p operations is

O � n log � m � n � � .

Proof:

� Left-right maxima in a permutation

3 1 4 7 2 5 6

� Exp[# left-right maxima in a random permutation of length k] � Hk� lnk

� prob � j-th element is a maximum � � 1 � j

� Exp[# left-right maxima] � ∑1 � j � k 1 � j � Hk

� Consider a fixed node v, let k � indeg � v � , let e1, � � � , ek be the order in which the

edges into v are relaxed, and let ui � source � ei � .

� d � u1 �� d � u2 �� � � �� d � uk � since nodes are scanned according to increasing d.

� Edge ei causes a decrease p iff i � 2 and d � ui � � c � ei � � min � d � u j � � c � e j � ; j � i � �

� number of decrease p � v �� � is bounded by the number of i such that

i � 2 and c � ei � � min � c � e j � ; j � i � �

� Since the order in which the edges into v are relaxed is independent of the costs

assigned to them, the expected number of such i is simply the number of left-right

maxima in a permutation of size k (minus 1, since i � 1 is not considered).

Expectation = Hk� 1. Thus

E � decrease p �� ∑
v

Hindeg v !� 1� ∑
v

ln indeg � v �� n ln � m � n � �

Consequence: expected running time of Dijkstra is O � m � n log � m � n � logn � with the

heap implementation of priority queues.

asymptotically more than O � m � n logn � only for n � o � m � and m � o � n logn loglogn � .

MPI Informatik 11 Kurt Mehlhorn

Radix Heaps [Delgado-Fox, Ahuja-Mehlhorn-Orlin-Tarjan]
� edge costs are integers in � 0 � � C �

� radix heaps exploit the binary representation of tentative distances.

� for numbers a � ∑i � 0 αi2i and b � ∑i � 0 βi2i let

(most distinguishing index) msd � a � b � �
"

$

max � i ; αi
� βi � a
� b

� 1 a � b

� If a � b then a has a zero bit in position i � msd � a � b � and b has a one bit.

� we assume that msd � a � b � can be computed in O � 1 � (can be removed)

� radix heap = sequence of buckets B% 1, B0, � � � , BK where K � 1 � & logC ' .

� min = tentative distance of node scanned most recently

� unscanned node v is stored in bucket Bi, where i � min � msd � min � d � v � � � K � .

� Buckets are organized as linear lists and every node keeps a handle to the list item

representing it.

Operations on Radix Heaps

init create K � 1 empty lists, time O � K �

insert � v � d � v � � inserts v into the appropriate list, time O � 1 � ,

decrease p � v � d � v � � removes v from the list containing it and inserts it into the
appropriate queue, time O � 1 �

extract min 1. find the minimum i such that Bi is non-empty.

2. time O � 1 � if bit-vector of non-empty buckets is kept, O � i � with linear search

3. if i � � 1, extract an arbitrary element in B% 1. Time O � 1 �

4. if i � 0, iterate over Bi and set min to smallest tentative distance in Bi.

5. move elements in Bi to the appropriate new bucket.

6. total time for extract min is O � 1 � if i � � 1 and O � 1 � (Bi (� if i � 0.

7. Obs: every node in bucket Bi moves to a bucket with smaller (!!!) index.

8. total time for searching for minimal i in all extract mins: O � n �

9. total time for moving elements around in all extract mins: O � nK �
Theorem 1 With the Radix heap implementation of priority queues, Dijkstra’s algorithm

runs in time O � m � nK � � O � m � n logC � .

MPI Informatik 13 Kurt Mehlhorn

Lemma 1 Let i be minimal such that Bi is non-empty and assume i � 0. Let min be the

smallest element in Bi. Then msd � min � x � � i for all x � Bi.

� distinguish the cases i � K and i � K.

� min) = the old value of min.

� assume i � K: i is the most significant distinguishing index of min) and any x � Bi

– min) has a zero in bit position i

– all x � Bi have a one in bit position i.

– they agree in all positions with index larger than i.

– Thus the most significant distinguishing index for min and x is smaller than i.

� Let us next assume that i* K and consider any x + BK . Then min , - min . x . min , � C. Let

j* msd / min , 0 min 1 and h* msd / min 0 x 1 . Then j 2 K. We want to show that h - K. Observe first that

h 3* j since min has a one bit in position j and a zero bit in position h. Let min ,* ∑l µl2l .

Assume first that h - j and let A* ∑l 4 j µl2l . Then min , . A � ∑l 5 j 2l . A � 2 j� 1 since the j-th bit of

min , is zero. On the other hand, x has a one bit in positions j and h and hence x 2 A � 2 j � 2h. Thus

2h . C and hence h . 6 logC 7 - K.

Assume next that h 8 j and let A* ∑l 4 h µl2l . We will derive a contradiction. min , has a zero bit in

positions h and j and hence min , . A � 2h� 1� 2 j . On the other hand x has a one bit in position h and

hence x 2 A � 2h. Thus x� min , 8 2 j 2 2K 2 C, a contradiction.

MPI Informatik 14 Kurt Mehlhorn

Linear Expected Time [Meyer 00, Goldberg 01]
� edge costs are random integers in � 0 � � C �

� min in cost � v � = minimum cost of any edge into v.

� split queue into two parts

– F = all nodes whose tentative distance label is known to be exact

– B = the other nodes in the queue. B is organized as a radix heap.

� also maintain a value min.

� scan nodes as follows:

– when F is non-empty, scan an arbitrary node in F .

– when F is empty, the minimum is selected from B and min is set to it.

– the nodes in the first non-empty bucket Bi are redistributed if i � 0.

– modified redistribution process: when v is moved and

d � v �� min � min in cost � v � , move v to F .

– Observe that any future relaxation of an edge into v cannot decrease d � v � and

hence d � v � is know to be exact at this point.

MPI Informatik 15 Kurt Mehlhorn

Theorem 2 (Meyer, Goldberg) Let G be an arbitrary graph and let c be a random

function from E to � 0 � � C � . Then alg above runs in expected time O � n � m � .

� As before nodes start out in BK .

� when v is moved to a new bucket B j but not yet to F ,

d � v � � min � min in cost � v � and hence j � logmin in cost � v � .

� We conclude that the total charge to nodes in extract min ops is

∑
v

� K� logmin in cost � v � � 1 �� n � ∑
e

� K� logc � e � � �

� K� logc � e � is the number of leading zeros in the binary representation of c � e � when

written as a K-bit number.

� our edge costs are uniform random numbers in � 0 � � C � and K � 1 � & logC '

� thus the expected number of leading zeros is O � 1 � .

� total expected cost of extract min is O � n � m � . Time outside is also O � n � m � .

MPI Informatik 16 Kurt Mehlhorn

Limited Randomness

Theorem 3 Let G be an arbitrary graph, let c : E	
 � 0 � � C � be an arbitrary cost function,

let 0� k� K � 1 � & logC ' , and let c be obtained from c by making the last k bits of each

cost random. Then the single source shortest path problem can be solved in expected time

O � n � K� k � � m � .

� By the proof of the preceding theorem, the total cost is

O � n � m � ∑
v

� K� logmin in cost � v � � 1 �

� Next observe that min in cost � v � is the minimum of indeg � v � numbers of which the

last k bits are random. Thus

E � K� logmin in cost � v � � � K� k � ∑
e9 u � v !

of leading zeros in random part of c � e �

� K� k � O � indeg � v � �

