Data Structures and Graph Algorithms
Shortest Paths

Kurt Mehlhorn
Max-Planck-Institut fur Informatik

MPI Informatik 1 Kurt Mehlhorn

Contents

1. the worst case running time of many graph algorithms can be improved by clever
data structures

e priority queues for Dijkstra’s shortest path algorithm O(n?) = O(m+nlogn)
e dynamic trees for maxflow algorithms O(n?,/m) = O(nm)
e mergeable priority queues for general weighted matchings
O(n3) = O(nmlogn)
2. what is the effect on “actual” running times on synthetic and real inputs
e priority queues for Dijkstra’s shortest path algorithm
e dynamic trees for maxflow algorithms

e mergeable priority queues for general weighted matchings

3. how large are the gains and can we explain them ??7?

MPI Informatik 2 Kurt Mehlhorn

Dijkstra’s Single Source Shortest Path Algorithm

G = (V,E) directed graph, s € V source node, ¢c: E — R>q edge costs

Dijkstra’s Algorithm
d(s)=0and d(v) = o for v #s; tentative distances
declare all nodes unscanned,;
while there is an unscanned node
{ let u be the unscanned node with minimal tentative distance;

forall edgese = (u,v) outofu

{ C=d(u)+c(e);

If (C<d(v)) setd(v)=C;
}

declare u scanned:

}

Dijkstra iterated over all nodes to find the unscanned u with minimal d(u)

running time ©(n+m) It is © and not just O !

MPI Informatik 3 Kurt Mehlhorn

Dijkstra’s Algorithm with Priority Queues

the unscanned nodes u with d(u) < o are stored in a priority queue

define a priority queue for the nodes of G;

setd(s) = 0and d(v) = o for v # s and declare all nodes unscanned

PQ.insert(s,0);

while (! PQ.isempty())

{ select u € PQ with d(u) minimal and remove it; declare u scanned
forall edgese = (u,v)

{ If (D=d(u)+c(e) <d(v))

{if (d(v) ==)
{ PQ.insert(v,D); //vhas been reached }
else
{ PQ.decrease_p(v,D); 1
d(v) =D;
}
}

}

Init
Insert

IS empty
extractmin

insert

decrease_p

Dijkstra’s Algorithm with Priority Queues

define a priority queue for the nodes of G; Init
set d(s) =0 and d(v) = o for v # s and declare all nodes unscanned

PQ.insert(s,0); 1 insert
while (! PQ.isempty()) n is.empty
{ select u € PQ with d(u) minimal and remove it; declare u scanned n extract min

forall edgese = (u,v)

{ if (D=d(u)+c(e) <d(v))

{if (d(v) ==w)
{ PQ.insert(v,D); //vhas been reached } n—1insert
else
{ PQ.decrease p(v,D); } up to m— (n— 1) decrease_p
d(v) = D;
}
}

}

time = ©(N+ M+ Tinit + N - (Tisempty + Textractmin + Tinsert)) + O(M - Tgecreasep)

Priority Queue | mplementations

time = ©(N+ M+ Tinit + N - (Tisempty + Textractmin + Tinsert)) + O(M - Tgecreasep)

Insert extractmin decreasep worst-case T

no data structure 1 Nn 1 O(n?+m)
binary heaps logn logn logn O(nlogn) +O(mlogn)

Fib heaps logn logn 1 O(nlog+m)

Fib heaps have larger constant factors than bin heaps

MPI Informatik 6 Kurt Mehlhorn

A Wor st-Case Example

i+1

Qc Qc """
0 1

A worst case graph for Dijkstra’s algorithm. All edges (i,i+ 1) have cost ¢ and an edge
(1,J) withi+1 < j has cost ¢; j. The ¢; j are chosen such that the shortest path tree with
root O is the path 0,1,... ,n— 1 and such that the shortest path tree that is known after
removing node i1 — 1 from the queue is as shown. Among the edges out of node i1 — 1 the
edge (i—1,i) is the shortest, the edge (i—1,n—1) is the second shortest, and the edge
(i—1,i+1) is the longest. Every decrease prio makes smallest key in PQ.

source: LEDADbook, Section on priority queues

MPI Informatik 7 Kurt Mehlhorn

Experiments [Cherkassky-Goldberg-Radzik, L EDAbooK]

Instance ||| f_.heap | pheap | kheap | binheap | listpg | r.heap | mheap
srS 0.36 0.34 0.35 0.34 0.51 0.33 0.35
sr,L 0.38 0.36 0.37 0.34 0.54 0.35 0.54
SW,S 1.86 1.09 3.77 1.38 1 0.76 2.68
S,w,L 1.87 1.1 3.68 1.34 1 0.77 8.49
,r,S 4.96 3.19 5.2 3.36 - 2.52 2.52
l,r,L 6.61 4.81 6.4 4.49 - 3.76 3.38
l,W,S 3.32 2.56 0.17 3.79 - 1.63 3.11
l,w,L 2.91 1.92 7.65 3.22 - 2.57 2.55

m = 500000 and n = 2000 (s), or n = 200000 (I) nodes.

random graphs (r) with random edge weights in [0..M — 1|, where M = 100 (S) or
M = 100000 (L),

worst case graphs (w) with ¢ =0 (S) or c = 10000 (L).

binheap < list pg and bin_heap < fib_heap for random graphs and f_heap < bin_heap for
worst-case graphs with large n

Noshita's Aver age Case Analysis

e G = (V,E) arbitrary directed graph, s source node
e foreveryveV letC(v) be a set of non-negative real numbers of cardinality indeg(v).

e the assignment of the costs in C(v) to the edges into v is made at random, i.e.,
probability space consists of [, indeg(v)! many assignments of edge costs to edges.

e Theorem [Noshita]: The expected number of decrease_p operations is
O(nlog(m/n)).
Proof:

e Left-right maxima in a permutation
31 4 7 2 5 6

e EXpl[# left-right maxima in a random permutation of length k] = Hx < Ink
e prob(j-th element is a maximum) =1/ j

o Exp[# left-right maxima] = ¥ 1.j<x1/]j = Hx

MPI Informatik 9 Kurt Mehlhorn

e Consider a fixed node v, let k = indeg(v), let ey, ..., ex be the order in which the
edges into v are relaxed, and let u; = source(e;).

e d(uy) <d(uz) <...<d(uk) since nodes are scanned according to increasing d.

e Edge ej causes a decrease_p iff i > 2 and d(u;) +c(ej) <min{d(u;)+c(ej); j<i}.

e number of decrease_p(v, —) is bounded by the number of i such that
i>2 and c(e)) <min{c(e;);j<i}.

e Since the order in which the edges into v are relaxed is independent of the costs
assigned to them, the expected number of such i is simply the number of left-right
maxima in a permutation of size k (minus 1, since 1 = 1 is not considered).
Expectation = Hx — 1. Thus

E[decrease p] < Z Hindegv) — 1 < Z Inindeg(v) < nin(m/n)) 1
\' \'

Consequence: expected running time of Dijkstra is O(m -+ nlog(m/n)logn) with the
heap implementation of priority queues.

asymptotically more than O(m+ nlogn) only for n = o(m) and m = o(nlogn loglogn).

Radix Heaps [Delgado-Fox, Ahuja-M ehlhorn-Orlin-Tarjan]
e edge costs are integers in [0..C]
e radix heaps exploit the binary representation of tentative distances.
o for numbersa= ;>0 and b = ¥;oBi2' let

max{i;a; #Bi} a#b

(most distinguishing index) msd(a,b) = { :
1 q —

e If a < b then ahasa zero bit in position i = msd(a,b) and b has a one bit.

e We assume that msd(a, b) can be computed in O(1) (can be removed)

e radix heap = sequence of buckets B_1, By, ..., Bk where K =1+ |logC]|.
e min = tentative distance of node scanned most recently

e unscanned node v is stored in bucket B;, where i = min(msd(min,d(v)),K).

e Buckets are organized as linear lists and every node keeps a handle to the list item
representing it.

MPI Informatik 11 Kurt Mehlhorn

Operations on Radix Heaps

init create K + 1 empty lists, time O(K)
insert(v,d(v)) inserts v into the appropriate list, time O(1),
decrease_p(v,d(v)) removes v from the list containing it and inserts it into the
appropriate queue, time O(1)
extractmin 1. find the minimum i such that B; is non-empty.
2. time O(1) if bit-vector of non-empty buckets is kept, O(i) with linear search
If i = —1, extract an arbitrary element in B_1. Time O(1)
If 1 > 0, iterate over B; and set min to smallest tentative distance in B;.
move elements in B; to the appropriate new bucket.
total time for extract min is O(1) if i = —1 and O(1+ |B;|) if i > 0.
Obs: every node in bucket B; moves to a bucket with smaller (!!!) index.
total time for searching for minimal i in all extract mins: O(n)

© ©o N o ok~ W

total time for moving elements around in all extract mins: O(nK)

Theorem 1 With the Radix heap implementation of priority queues, Dijkstra’s algorithm
runs in time O(m+nK) = O(m+nlogC).

Lemma 1 Leti be minimal such that B; is non-empty and assume i > 0. Let min be the
smallest element in B;. Then msd(min,x) < i for all x € B;.

e distinguish the cases 1 < K and I = K.
e min’ = the old value of min.

e assume i < K: i isthe most significant distinguishing index of min” and any x € B;
— min’ has a zero in bit position i
— all x € B; have a one in bit position i.
— they agree in all positions with index larger than i.
— Thus the most significant distinguishing index for min and x is smaller than 1.

® Let us next assume that i = K and consider any x € Bk. Then min” < min < x <min’ 4C. Let
j = msd(min’,min) and h = msd(min,x). Then j > K. We want to show that h < K. Observe first that
h # j since min has a one bit in position j and a zero bit in position h. Let min’ =3, w2

Assume first that h < jand let A= 3,5 2". Thenmin’ <A+, ;2" <A+2) —1since the j-th bit of
min’ is zero. On the other hand, x has a one bit in positions j and h and hence x > A+2J +2". Thus
2" < C and hence h < [logC| < K.

Assume nextthath > jand let A= S h 1 2'. We will derive a contradiction. min’ has a zero bit in
positions h and j and hence min’ < A+ 2" — 1 — 21, On the other hand x has a one bit in position h and
v infohience X > A+ 2. Thus x — min’ > 2 > 2K > C,1a contradiction. Kurt Mehlhorn

Linear Expected Time [Meyer 00, Goldberg 01]

e edge costs are random integers in [0..C]
e min.in.cost(v) = minimum cost of any edge into v.

e split queue into two parts
— F = all nodes whose tentative distance label Is known to be exact

— B =the other nodes in the queue. B is organized as a radix heap.
e also maintain a value min.

e scan nodes as follows:
— when F is non-empty, scan an arbitrary node in F.
— when F is empty, the minimum is selected from B and min is set to it.
— the nodes in the first non-empty bucket B; are redistributed if 1 > O.

— modified redistribution process: when v is moved and
d(v) < min+min.incost(v), move v to F.

— Observe that any future relaxation of an edge into v cannot decrease d(v) and
veninormatikNENCE d (V) 1S know to be exact at this point. Kurt Mehihorn

Theorem 2 (Meyer, Goldberg) Let G be an arbitrary graph and let ¢ be a random
function from E to [0..C]. Then alg above runs in expected time O(n+ m).

As before nodes start out In Bk.

when v Is moved to a new bucket Bj but not yet to F,
d(v) > min+min.in.cost(v) and hence j > logmin.in.cost(v).

We conclude that the total charge to nodes in extract-min ops is

Z(K —logmin.incost(v) +1) <n+ Z(K —logc(e)) .

\Y

K —logc(e) is the number of leading zeros in the binary representation of c(e) when
written as a K-bit number.

our edge costs are uniform random numbers in [0..C] and K =1+ |logC]|
thus the expected number of leading zeros is O(1).

total expected cost of extract min is O(n+m). Time outside is also O(n+m).

MPI Informatik 15 Kurt Mehlhorn

Limited Randomness

Theorem 3 Let G be an arbitrary graph, letc: E — [0..C] be an arbitrary cost function,
let0 <k <K =1+ |logC|, and let T be obtained from ¢ by making the last k bits of each

cost random. Then the single source shortest path problem can be solved in expected time
O(n(K —k)+m).

e By the proof of the preceding theorem, the total cost is
O(n+m+ % (K—logminincost(v) + 1)
\'
e Next observe that min.in_cost(v) is the minimum of indeg(v) numbers of which the

last k bits are random. Thus

E|K —logmin.incost(v)] < K-—k+ Z # of leading zeros in random part of T(e)
e=(u,v)

< K—k+O(indeg(v))

MPI Informatik 16 Kurt Mehlhorn

