Data Structures and Graph Algorithms Shortest Paths

Kurt Mehlhorn
Max-Planck-Institut für Informatik

Contents

- 1. the worst case running time of many graph algorithms can be improved by clever data structures
 - priority queues for Dijkstra's shortest path algorithm $O(n^2) \Longrightarrow O(m + n \log n)$
 - dynamic trees for maxflow algorithms $O(n^2\sqrt{m}) \Longrightarrow O(nm)$
 - mergeable priority queues for general weighted matchings

$$O(n^3) \Longrightarrow O(nm \log n)$$

- 2. what is the effect on "actual" running times on synthetic and real inputs
 - priority queues for Dijkstra's shortest path algorithm
 - dynamic trees for maxflow algorithms
 - mergeable priority queues for general weighted matchings
- 3. how large are the gains and can we explain them ???

Dijkstra's Single Source Shortest Path Algorithm

G = (V, E) directed graph, $s \in V$ source node, $c : E \mapsto \mathbb{R}_{\geq 0}$ edge costs

Dijkstra's Algorithm

```
d(s) = 0 and d(v) = \infty for v \neq s; tentative distances declare all nodes unscanned; while there is an unscanned node { let u be the unscanned node with minimal tentative distance; forall edges e = (u, v) out of u { C = d(u) + c(e); if (C < d(v)) set d(v) = C; } declare u scanned; }
```

Dijkstra iterated over all nodes to find the unscanned u with minimal d(u)

running time $\Theta(n^2 + m)$ it is Θ and not just O!!!!!

Dijkstra's Algorithm with Priority Queues

the unscanned nodes u with $d(u) < \infty$ are stored in a priority queue

```
define a priority queue for the nodes of G;
                                                                                           init
set d(s) = 0 and d(v) = \infty for v \neq s and declare all nodes unscanned
PQ.insert(s,0);
                                                                                        insert
while (! PQ.is_empty())
                                                                                      is_empty
{ select u \in PQ with d(u) minimal and remove it; declare u scanned
                                                                                  extract_min
  forall edges e = (u, v)
  { if (D = d(u) + c(e) < d(v))
     \{ \mathbf{if} (d(v) == \infty) \}
       { PQ.insert(v,D); // v has been reached }
                                                                                       insert
       else
        \{ PQ.decrease\_p(v,D); \}
                                                                                  decrease_p
```

Dijkstra's Algorithm with Priority Queues

```
define a priority queue for the nodes of G;
                                                                                              init
set d(s) = 0 and d(v) = \infty for v \neq s and declare all nodes unscanned
PQ.insert(s,0);
                                                                                          1 insert
while (! PQ.is_empty())
                                                                                       n is_empty
{ select u \in PQ with d(u) minimal and remove it; declare u scanned
                                                                                   n extract_min
  forall edges e = (u, v)
  { if (D = d(u) + c(e) < d(v))
     { if (d(v) == \infty)
        \{ PQ.insert(v,D); // v \text{ has been reached } \}
                                                                                    n-1 insert
        else
                                                         \} up to m - (n-1) decrease_p
        \{ PQ.decrease\_p(v,D); \}
       d(v) = D;
      time = \Theta(n + m + T_{init} + n \cdot (T_{is\_empty} + T_{extract\_min} + T_{insert})) + O(m \cdot T_{decrease\_p})
```

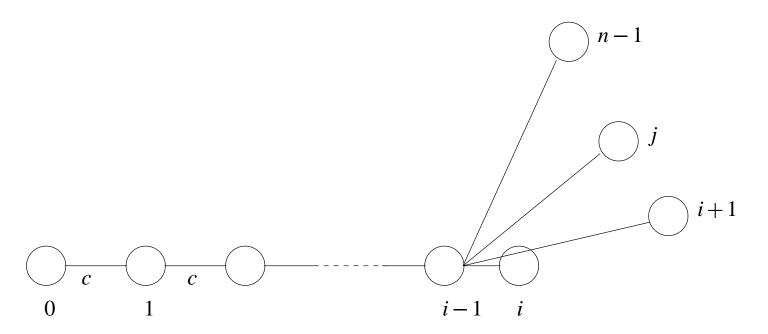
Priority Queue Implementations

time =
$$\Theta(n + m + T_{init} + n \cdot (T_{is_empty} + T_{extract_min} + T_{insert})) + O(m \cdot T_{decrease_p})$$

	insert	extract_min	decrease_p	worst-case T
no data structure	1	n	1	$\Theta(n^2+m)$
binary heaps	$\log n$	$\log n$	$\log n$	$\Theta(n\log n) + O(m\log n)$
Fib heaps	$\log n$	$\log n$	1	$\Theta(n\log + m)$

Fib heaps have larger constant factors than bin heaps

A Worst-Case Example



A worst case graph for Dijkstra's algorithm. All edges (i, i+1) have cost c and an edge (i, j) with i+1 < j has cost $c_{i,j}$. The $c_{i,j}$ are chosen such that the shortest path tree with root 0 is the path $0, 1, \ldots, n-1$ and such that the shortest path tree that is known after removing node i-1 from the queue is as shown. Among the edges out of node i-1 the edge (i-1,i) is the shortest, the edge (i-1,n-1) is the second shortest, and the edge (i-1,i+1) is the longest. Every decrease prio makes smallest key in PQ.

source: LEDAbook, Section on priority queues

Experiments [Cherkassky-Goldberg-Radzik, LEDAbook]

Instance	f_heap	p_heap	k_heap	bin_heap	list_pq	r_heap	m_heap
s,r,S	0.36	0.34	0.35	0.34	0.51	0.33	0.35
s,r,L	0.38	0.36	0.37	0.34	0.54	0.35	0.54
s,w,S	1.86	1.09	3.77	1.38	1	0.76	2.68
s,w,L	1.87	1.1	3.68	1.34	1	0.77	8.49
1,r,S	4.96	3.19	5.2	3.36	-	2.52	2.52
l,r,L	6.61	4.81	6.4	4.49	-	3.76	3.38
1,w,S	3.32	2.56	9.17	3.79	-	1.63	3.11
l,w,L	2.91	1.92	7.65	3.22	-	2.57	2.55

m = 500000 and n = 2000 (s), or n = 200000 (1) nodes.

random graphs (r) with random edge weights in [0..M-1], where M=100 (S) or M=100000 (L),

worst case graphs (w) with c = 0 (S) or c = 10000 (L).

 $bin_heap \ll list_pq$ and $bin_heap \ll fib_heap$ for random graphs and $f_heap \ll bin_heap$ for worst-case graphs with large n

Noshita's Average Case Analysis

- G = (V, E) arbitrary directed graph, s source node
- for every $v \in V$ let C(v) be a set of non-negative real numbers of cardinality indeg(v).
- the assignment of the costs in C(v) to the edges into v is made at random, i.e., probability space consists of $\prod_{v} indeg(v)!$ many assignments of edge costs to edges.
- **Theorem [Noshita]:** The expected number of *decrease_p* operations is $O(n\log(m/n))$.

Proof:

• Left-right maxima in a permutation

3 1 4 7 2 5 6

- Exp[# left-right maxima in a random permutation of length k] = $H_k \le \ln k$
- prob(j-th element is a maximum) = 1/j
- Exp[# left-right maxima] = $\sum_{1 \le j \le k} 1/j = H_k$

- Consider a fixed node v, let k = indeg(v), let e_1, \ldots, e_k be the order in which the edges into v are relaxed, and let $u_i = source(e_i)$.
- $d(u_1) \le d(u_2) \le ... \le d(u_k)$ since nodes are scanned according to increasing d.
- Edge e_i causes a decrease_p iff $i \ge 2$ and $d(u_i) + c(e_i) < \min \{d(u_j) + c(e_j) ; j < i\}$.
- number of $decrease_p(v, -)$ is bounded by the number of i such that

$$i \ge 2$$
 and $c(e_i) < \min \{c(e_j); j < i\}$.

• Since the order in which the edges into v are relaxed is independent of the costs assigned to them, the expected number of such i is simply the number of left-right maxima in a permutation of size k (minus 1, since i = 1 is not considered). Expectation = $H_k - 1$. Thus

$$E[decrease_p] \le \sum_{v} H_{indeg(v)} - 1 \le \sum_{v} \ln indeg(v) \le n \ln(m/n))$$

Consequence: expected running time of Dijkstra is $O(m + n \log(m/n) \log n)$ with the heap implementation of priority queues.

asymptotically more than $O(m + n \log n)$ only for n = o(m) and $m = o(n \log n \log \log n)$.

Radix Heaps [Delgado-Fox, Ahuja-Mehlhorn-Orlin-Tarjan]

- edge costs are integers in [0..*C*]
- radix heaps exploit the binary representation of tentative distances.
- for numbers $a = \sum_{i>0} \alpha_i 2^i$ and $b = \sum_{i>0} \beta_i 2^i$ let

(most distinguishing index)
$$msd(a,b) = \begin{cases} \max\{i; \alpha_i \neq \beta_i\} & a \neq b \\ -1 & a = b \end{cases}$$

- If a < b then a has a zero bit in position i = msd(a,b) and b has a one bit.
- we assume that msd(a,b) can be computed in O(1) (can be removed)
- radix heap = sequence of buckets B_{-1}, B_0, \ldots, B_K where $K = 1 + |\log C|$.
- min = tentative distance of node scanned most recently
- unscanned node v is stored in bucket B_i , where $i = \min(msd(min, d(v)), K)$.
- Buckets are organized as linear lists and every node keeps a handle to the list item representing it.

Operations on Radix Heaps

init create K + 1 empty lists, time O(K)

insert(v, d(v)) inserts v into the appropriate list, time O(1),

decrease_p(v,d(v)) removes v from the list containing it and inserts it into the appropriate queue, time O(1)

- *extract_min* 1. find the minimum i such that B_i is non-empty.
 - 2. time O(1) if bit-vector of non-empty buckets is kept, O(i) with linear search
 - 3. if i = -1, extract an arbitrary element in B_{-1} . Time O(1)
 - 4. if $i \ge 0$, iterate over B_i and set *min* to smallest tentative distance in B_i .
 - 5. move elements in B_i to the appropriate new bucket.
 - 6. total time for *extract_min* is O(1) if i = -1 and $O(1 + |B_i|)$ if $i \ge 0$.
 - 7. **Obs:** every node in bucket B_i moves to a bucket with smaller (!!!) index.
 - 8. total time for searching for minimal i in all extract_mins: O(n)
 - 9. total time for moving elements around in all *extract_mins*: O(nK)

Theorem 1 With the Radix heap implementation of priority queues, Dijkstra's algorithm runs in time $O(m+nK) = O(m+n\log C)$.

Lemma 1 Let i be minimal such that B_i is non-empty and assume $i \ge 0$. Let min be the smallest element in B_i . Then msd(min, x) < i for all $x \in B_i$.

- distinguish the cases i < K and i = K.
- min' = the old value of min.
- assume i < K: i is the most significant distinguishing index of min' and any $x \in B_i$
 - min' has a zero in bit position i
 - all $x \in B_i$ have a one in bit position i.
 - they agree in all positions with index larger than i.
 - Thus the most significant distinguishing index for min and x is smaller than i.
- Let us next assume that i = K and consider any $x \in B_K$. Then $min' < min \le x \le min' + C$. Let j = msd(min', min) and h = msd(min, x). Then $j \ge K$. We want to show that h < K. Observe first that $h \ne j$ since min has a one bit in position j and a zero bit in position h. Let $min' = \sum_l \mu_l 2^l$.

Assume first that h < j and let $A = \sum_{l>j} \mu_l 2^l$. Then $min' \le A + \sum_{l< j} 2^l \le A + 2^j - 1$ since the *j*-th bit of min' is zero. On the other hand, x has a one bit in positions j and h and hence $x \ge A + 2^j + 2^h$. Thus $2^h \le C$ and hence $h \le \lfloor \log C \rfloor < K$.

Assume next that h>j and let $A=\sum_{l>h}\mu_l2^l$. We will derive a contradiction. min' has a zero bit in positions h and j and hence $min' \leq A+2^h-1-2^j$. On the other hand x has a one bit in position h and MPI Infohence $x\geq A+2^h$. Thus $x-min'>2^j\geq 2^K\geq C$, a contradiction.

Linear Expected Time [Meyer 00, Goldberg 01]

- edge costs are random integers in [0..C]
- $min_in_cost(v) = minimum cost of any edge into v$.
- split queue into two parts
 - -F = all nodes whose tentative distance label is known to be exact
 - -B = the other nodes in the queue. B is organized as a radix heap.
- also maintain a value *min*.
- scan nodes as follows:
 - when F is non-empty, scan an arbitrary node in F.
 - when F is empty, the minimum is selected from B and min is set to it.
 - the nodes in the first non-empty bucket B_i are redistributed if $i \ge 0$.
 - modified redistribution process: when v is moved and $d(v) \le min + min_in_cost(v)$, move v to F.
- Observe that any future relaxation of an edge into v cannot decrease d(v) and MPI Informatik hence d(v) is know to be exact at this point.

Theorem 2 (Meyer, Goldberg) *Let G be an arbitrary graph and let c be a random function from E to* [0..C]*. Then alg above runs in expected time O*(n+m)*.*

- As before nodes start out in B_K .
- when v is moved to a new bucket B_j but not yet to F, $d(v) \ge min + min_in_cost(v)$ and hence $j \ge \log min_in_cost(v)$.
- We conclude that the total charge to nodes in *extract_min* ops is

$$\sum_{v} (K - \log \min_{in} cost(v) + 1) \le n + \sum_{e} (K - \log c(e)).$$

- $K \log c(e)$ is the number of leading zeros in the binary representation of c(e) when written as a K-bit number.
- our edge costs are uniform random numbers in [0..C] and $K = 1 + |\log C|$
- thus the expected number of leading zeros is O(1).
- total expected cost of *extract_min* is O(n+m). Time outside is also O(n+m).

Limited Randomness

Theorem 3 Let G be an arbitrary graph, let $c: E \mapsto [0..C]$ be an arbitrary cost function, let $0 \le k \le K = 1 + \lfloor \log C \rfloor$, and let \overline{c} be obtained from c by making the last k bits of each cost random. Then the single source shortest path problem can be solved in expected time O(n(K-k)+m).

• By the proof of the preceding theorem, the total cost is

$$O(n+m+\sum_{v}(K-\log min_in_cost(v)+1)$$

• Next observe that $min_in_cost(v)$ is the minimum of indeg(v) numbers of which the last k bits are random. Thus

$$E[K - \log \min_{cost}(v)] \le K - k + \sum_{e=(u,v)} \# \text{ of leading zeros in random part of } \overline{c}(e)$$

$$\le K - k + O(\inf_{c}(v))$$