The document discusses using machine learning for efficient attack detection in IoT devices without feature engineering. It proposes a feature-engineering-less machine learning (FEL-ML) process that uses raw packet byte streams as input instead of engineered features. This approach is lighter weight and faster than traditional methods. The FEL-ML model is trained directly on unprocessed packet data to perform malware detection on resource-constrained IoT devices. Prior research that used engineered features or complex deep learning models are not suitable for IoT due to limitations of memory and processing power. The proposed FEL-ML approach aims to enable effective network traffic security for IoT using minimal resources.