This document compares Principal Component Analysis (PCA) and Independent Component Analysis (ICA) and their application to facial image analysis. It provides an introduction to both PCA and ICA, including their processes and differences. The document then summarizes previous literature comparing PCA and ICA, describes implementations of PCA for facial recognition on Japanese, African, and Asian datasets in MATLAB, and calculates statistical metrics for the original and recognized images. It concludes that PCA is effective for pattern recognition and dimensionality reduction in facial analysis applications.