() WhatsApp

WhatsApp

Encryption Overview

Technical white paper

Version 8 Updated August 19, 2024

Version 7 Updated September 27, 2023

Version 6 Updated January 24, 2023

Version 5 Preview (Applicable to Multi-Device Beta Only) Updated September 27, 2021
Version 4 Preview (Applicable to Multi-Device Beta Only) Updated July 14, 2021
Version 3 Updated October 22, 2020

Version 2 Updated December 19, 2017

Version 1 Originally published April 5, 2016

AUGUST 19, 2024

Contents

MESSAGING SECUITY ...ttt ettt et e 2
=11 00 TSRO S TR RR 3
ClENt REGISTIAtioN.......ciiieiieiieeieeee ettt et beene e 5
INItIAting SESSION SETUP......oiiiiiiicieee ettt 13
Receiving SeSSION SETUP.....cc.iiiiiiiiie e 14
EXChanging MESSAQES.couiiuieiiiieieeeeeeeee et 15
GrOUP MESSAQES. ... ittt ettt et ettt et e b e b e e eneesaeens 17
Message Add-ons in Community Announcement GroUPS...........coeeevevereereeeeeennens 18
Sender Side BacKfill..........cooveiiiiieieiieieceeeee e 19
Message HiStOry SYNCING.......oouiiiiieieieiee ettt et 20
Call SEEUP ..ttt ettt ettt a et ene e neas 21
GrOUP CalliNg...ceeieeeeeeeeeeee et 21
SHATUSES . .ttt ettt 22
LIV LOCATION. ...ttt ettt ettt eneens 22
App State SYNCING SECUITY.......ooiiiiiiiii e 25
VETTYING KEYS .. eoiitiieiieieeeee ettt sttt s e ene e 32
Companion Device REMOVAL..........ccccueiiiiiiiiiieieeeeeee e 33
TrANSPOIT SECUIITY....etieiieie ettt ettt ettt et eeeenean 35
Defining ENd-to-ENd ENCIYPiON.........cooveiiiiiiieieeeieee e 35
Implementation on WhatSAPP SErVICES........c.couoouieiiiecieeeeeeeeeeeeeeee e 36
Implementation with Cloud APLL............ccocooiiiiiieeeee s 37
Invocation MeSSage RESPONSES........eiiuiieeiieeiie ettt e 38
Encryption Has NO Off SWItCh.........ooiiiiiiiiiie e 39
Displaying End-to-End Encryption Status..........ccceceeevieieinienieieieiecceeee e 40
CONCIUSION. ...ttt ettt et aeeee e s e sbesaeeseenseseene e 40

Messaging Security

Introduction

This white paper provides a technical explanation of WhatsApp’s end-to-end
encryption system. Please visit WhatsApp’s website at
www.whatsapp.com/security for more information.

WhatsApp Messenger allows people to exchange messages (including chats,

group chats, images, videos, voice messages and files), share status posts, and
make WhatsApp calls around the world. WhatsApp messages, voice, and video
calls between a sender and receiver that use WhatsApp client software use the

WhatsApp Encryption Overview

AUGUST 19, 2024

Signal protocol outlined below. See “Defining End-to-End Encryption” for
information about which communications are end-to-end encrypted.

The Signal Protocol, designed by Open Whisper Systemes, is the basis for
WhatsApp’s end-to-end encryption. This end-to-end encryption protocol is
designed to prevent third parties and WhatsApp from having plaintext access to
messages or calls. Due to the ephemeral nature of the cryptographic keys, even
in a situation where the current encryption keys from a user’s device are
physically compromised, they cannot be used to decrypt previously transmitted
messages.

A user can have multiple devices, each with its own set of encryption keys. If the

encryption keys of one device are compromised, an attacker cannot use them to

decrypt the messages sent to other devices, even devices registered to the same
user. WhatsApp also uses end-to-end encryption to encrypt the message history

transferred between devices when a user registers a new device.

This document gives an overview of the Signal Protocol and its use in WhatsApp.

Terms

Device Types

e Primary device - A device that is used to register a WhatsApp account
with a phone number. Each WhatsApp account is associated with a
single primary device. This primary device can be used to link additional
companion devices to the account. Supported primary device platforms
include Android and iPhone.

e Companion device - A device that is linked to an existing WhatsApp
account by the account’s primary device.

e Cloud API - A secure, Meta-hosted API service that enables
programmatic access to messaging and calling for WhatsApp. See
Implementation with Cloud API for more information.

Public Key Types

e Tdentity Key Pair — Along-term Curve25519 key pair, generated at
install time.

e Signed Pre Key - A medium-term Curve25519 key pair, generated at
install time, signed by the Identity Key, and rotated on a periodic
timed basis.

e One-Time Pre Keys — A queue of Curve25519 key pairs for one time
use, generated at install time, and replenished as needed.

WhatsApp Encryption Overview

https://developers.facebook.com/docs/whatsapp/cloud-api/overview

AUGUST 19, 2024

Session Key Types

Root Key — A 32-byte value that is used to create Chain Keys.
Chain Key — A 32-byte value that is used to create Message Keys.

Message Key — An 80-byte value that is used to encrypt message
contents. 32 bytes are used for an AES-256 key, 32 bytes for a
HMAC-SHA256 key, and 16 bytes for an IV.

Other Key Types

Linking Secret Key - A 32-byte value that is generated on a
companion device and must be passed by a secure channel to the
primary device, used to verify an HMAC of the linking payload received
from a primary device. The transmission of this key from companion
devices to the primary device is done by scanning a QR code.

Companion Linking

Linking Metadata - An encoded blob of metadata assigned to a
companion device during linking, used in conjunction with the
companion device’s Identity Key to identify a linked companion on
WhatsApp clients.

Signed Device List Data - An encoded list identifying the currently linked
companion devices at the time of signing. Signed by the primary
device's Identity Key using the 0x0602 prefix.

Account Signature - A Curve25519 signature computed over a fixed
prefix, Linking Metadata, and companion device's public Identity
Key using a primary device’s Identity Key.

Device Signature - A Curve25519 signature computed over a fixed prefix,
Linking Metadata, companion device's public Identity Key, and
primary’s devices public Identity Key using a companion device's
Identity Key.

Client Registration

Primary Device Registration

At registration time, a WhatsApp client transmits its public Identity Key,
public Signed Pre Key (with its signature), and a batch of public One-Time

WhatsApp Encryption Overview

AUGUST 19, 2024

Pre Keys to the server. The WhatsApp server stores these public keys
associated with the user’s identifier.

Companion Device Registration

To link a companion device to a WhatsApp account, the user’s primary device
must first create an Account Signature by signing the new device’s public
Identity Key and the companion device must create a Device Signature by
signing the primary’s public Identity Key. Once both signatures are
produced, end-to-end encrypted sessions can be established with the companion
device.

Linking the WhatsApp Business App with Cloud API: A WhatsApp Business app
user can also link Cloud API as a companion. Linking to Cloud APl is a special
event where prior to linking, the primary device generates a new random
Identity Key thereby invalidating all existing companions and existing
end-to-end encrypted Signal sessions.

WhatsApp supports the following options for linking a companion device.
Option 1: Link Using a QR-Code

With this option, the primary device scans a QR code which is displayed on the
companion device. The detailed steps are:

1. The companion client displays its public Identity Key (I.,panion) anda
generated ephemeral Linking Secret Key (Lopanion) in @ linking QR
code. Lonpanion iS Never sent to WhatsApp server.

2. The primary client scans the linking QR code and saves I;,.n10n tO disk.
3. The primary loads its own Identity Key as Iy

4. The primary generates Linking Metadata as L...4.: and updated Device
List Data containing the new companion as ListData.

5. The primary generates an Account Signature for the companion,
Asignature = CURVE255T9_SIGN(I, inary,
ACCOUNT_SIGNATURE_PREFIX || Lyctadata || Loompanion)-

a. ACCOUNT_SIGNATURE_PREFIX s setto 0x0605 if the
companion is Cloud API. Else it's set to x0600
6. The primary generates a Device List Signature for the updated Device
List Data, ListSignature = CURVE25519_SIGN(I 0x0602
|| ListData).

primary

7. The primary serializes the Linking Data (Lg,.,) containing L, c:aqata
Iprimary and Asignature-

WhatsApp Encryption Overview

AUGUST 19, 2024

8. The primary generates a Linking HMAC, PHMAC =
HMACSHA256(Lcompamionr I—data)~

9. Theprimary sends ListData, ListSignature, Lg,., and PHMAC to
WhatsApp server. See “Transport Security” for information about the
secure connection between WhatsApp clients and servers.

10. The server stores ListDataand ListSignature, and forwards Ly,
and PHMAC to the companion.

11. The companion verifies PHMAC, decodes L a1, int0 Lieradatar Lorimary @nd

A and verifies A

signatures signature-*

12. The companion saves L ciagata @Nd I 0.y to disk.

13. The companion generates a Device Signature for itself, Dg;garyre =
CURVE25519_SIGN(Icompanion, DEVICE_SIGNATURE_PREFIX

|| Lmetadata || Icompaniom || Iprimary)'

a. DEVICE_SIGNATURE_PREFIX is setto 0x0606 if the
companion is Cloud API. Else, it's set to 0x0601.
14 The Companion uploads I—metadata) Asignature) Dsignature) Icompanionr the
companion’s public Signed Pre Key (with its signature), and a batch of
public One-Time Pre Keys to WhatsApp server.

15. The server stores the uploaded data associated with the user’s identifier
combined with a device specific identifier.

Option 2: Link Using an 8-character Code

With this option, the companion device generates and displays a random
8-character alphanumeric code (C.oypani0n) @nd the user types it into the primary
device to complete linking the device to their WhatsApp account.

In this mechanism the ephemeral Linking Secret Key (Loupanion) @s described in
step 1 of the previous option, is not generated by the companion, but mutually
derived by both primary and companion devices when the user manually inputs
Ceompanion- The lower entropy C..nan10n 1S Used to facilitate an encrypted ECDH Key
exchange between primary and companion to yield a high entropy AES256
shared key (1inkCodePairingKeyBundleEncryptionKey). This shared key
is then used for encrypted transfer of additional material from companion to
primary used for final derivation of (L.qy,an10n) @nd verification of companion
(Tcompanion) @nd primary (I,.in.r,) Public identity keys used in the exchange.

To link a companion device to a WhatsApp account, the user’s primary device
must first create an Account Signature by signing the new device’s public
Identity Key and the companion device must create a Device Signature by

WhatsApp Encryption Overview

AUGUST 19, 2024

signing the primary’s public Identity Key. Once both signatures are produced,
end-to-end encrypted sessions can be established with the companion device.

The detailed steps are, in order:

On the companion:
1. The user types their phone number on the companion device.

2. The companion generates a random 40-bit 1inkCodePairingSecret
from CSPRNG. The companion displays 1inkCodePairingSecret to
the user as an 8-character, Base32 alphanumeric string.

3. The companion generates a 32 byte random,
linkCodePairingKdfCompanionNonce, and a 16 byte random,
companionHelloIV, from CSPRNG.

4. The companion generates a curve25519 keypair and stores it as
(linkCodePairingCompanionADVEphemeralPublic,
linkCodePairingCompanionADVEphemeralPrivate).

5. The companion generates a 32 byte AES256 key,
linkCodePairingECDHEncKeyCompanion, using PBKDF2 with
HMAC-SHA-256 as the PRF. 1inkCodePairingSecret is used as
initial key material and 1inkCodePairingKdfCompanionNonce is
used as salt for the key derivation.

var linkCodePairingECDHEncKeyCompanion =
PBKDF2-HMAC-SHA-256 (iteration=2"17,
ikm=utf8.encode(linkCodePairingSecret),
salt=1inkCodePairingKdfCompanionNonce, length=32);

6. The companion encrypts
linkCodePairingCompanionADVEphemeralPublic with AES-CTR

using 1inkCodePairingECDHENncKeyCompanion from above, as
follows:

linkCodePairingWrappedCompanionEphemeralPub =
AES-CTR-ENCRYPT(
payload_data=1linkCodePairingCompanionADVEphemeralKe
yPairPub,
aes_key=1linkCodePairingECDHENncKeyCompanion,
iv=companionHelloIV

)

WhatsApp Encryption Overview

AUGUST 19, 2024

7. The companion constructs
linkCodePairingWrappedCompanionEphemeralPub by
prepending 1inkCodePairingKdfCompanionNonce, and
companionHelloIVto
linkCodePairingEncryptedCompanionEphemeralPub derived
above. The companion sends the
linkCodePairingWrappedCompanionEphemeralPub to the
primary device via WhatsApp server as a Companion Hello message.
See “Transport Security” for information about the secure connection
between WhatsApp clients and servers.

On the primary:

8. Upon receipt of Companion Hello by the primary device, the user can
choose to proceed with pairing by entering the
linkCodePairingSecret that appears on the companion device
described in step 2 on their primary device. Primary device will read and
save first 32 bytes of
linkCodePairingWrappedCompanionEphemeralPub as
linkCodePairingKdfCompanionNonce, the next 16 bytes as
companionHelloIV, and remaining as
linkCodePairingEncryptedCompanionEphemeralPub.

9. Mirroring step 5 as described above, the primary device will use the
same modality to derive 1inkCodePairingECDHEncKeyCompanion.
linkCodePairingSecret and
linkCodePairingKdfCompanionNonce from step 8 are used as
initial key material and salt inputs to PBKDF2-HMAC-SHA-256
respectively.

10. The primary decrypts
linkCodePairingWrappedCompanionEphemeralPub using
linkCodePairingECDHEncKeyCompanion as follows:

linkCodePairingDecryptedCompanionEphemeralPub =
AES-CTR-DECRYPT(
aes_key=1linkCodePairingECDHENncKeyCompanion,
payload=1inkCodePairingEncryptedCompanionEphemeralP
ub,

iv=companionHelloRandomIV,

)

11. If anincorrect 1inkCodePairingSecret was supplied by the user,
step 9 and 10 will not abort, and AES-CTR-DECRYPT will produce
incorrect plain text output. The resultant

8 WhatsApp Encryption Overview

AUGUST 19, 2024

12.

13.

14.

15.

linkCodePairingDecryptedCompanionEphemeralPub will yield
incorrect key agreement described in upcoming step 13, and result in
validation failure and cancellation of the pairing attempt by the primary
device, described later at step 25.

Mirroring step 4 as described above, the primary device generates its
own curve25519 keypair, and saves it as
linkCodePairingPrimaryADVEphemeralPublic,
linkCodePairingPrimaryADVEphemeralPrivate.

Similar to step 5 as described above, the primary device generates its
own AES256 key, 1inkCodePairingECDHENncKeyPrimary. The same
starting material, 1LinkCodePairingSecret, is used in the derivation,
but a new random salt, 1inkCodePairingKdfPrimaryNonce, is
supplied to the key derivation function, PBKDF2-HMAC-SHA-256.

Similar to step 6 as described above, the primary device encrypts
linkCodePairingPrimaryADVEphemeralPublic with AES-CTR
using 1inkCodePairingECDHENncKeyPrimary from step 12 with new
random IV, primaryHelloRandomIV, as follows:

linkCodePairingEncryptedPrimaryEphemeralPub =
AES-CTR-ENCRYPT (
payload_data=1linkCodePairingCompanionADVEphemeralKe
yPairPub,

aes_key=1inkCodePairingECDHEncKeyPrimary,
iv=primaryHelloRandomIV

)

The primary constructs
linkCodePairingWrappedPrimaryEphemeralPub by prepending
linkCodePairingKdfPrimaryNonce, and primaryHelloIV to
linkCodePairingEncryptedPrimaryEphemeralPub derived
above. The primary loads its own Identity Key as I ..y, S€Nds I, 5.0y,
and 1inkCodePairingWrappedPrimaryEphemeralPub to the
companion via WhatsApp Server as a Primary Hello message.

On the companion:

16.

Upon receipt of Primary Hello, companion will read and save first 32
bytes of 1inkCodePairingWrappedPrimaryEphemeralPub as
linkCodePairingKdfPrimaryNonce, the next 16 bytes as
primaryHelloIV, and remaining as
linkCodePairingEncryptedPrimaryEphemeralPub. Companion
will use the similar modality as described in step 9 to derive
linkCodePairingECDHEncKeyPrimary. Locally stored

WhatsApp Encryption Overview

AUGUST 19, 2024

17.

18.

19.

20.

21.

linkCodePairingSecret from steps 2 and
linkCodePairingKdfPrimaryNonce are used as initial key material
and salt inputs to PBKDF2-HMAC-SHA-256 respectively.

The companion decrypts
linkCodePairingEncryptedPrimaryEphemeralPub using
linkCodePairingECDHEncKeyPrimary from previous step as
follows:

linkCodePairingDecryptedPrimarEphemeralPub =
AES-CTR-DECRYPT (aes_key=1inkCodePairingECDHEncKeyPr
imary,
payload=1linkCodePairingEncryptedPrimaryEphemeralPub
, iv=primaryHelloIV);

The companion derives ECDH shared secret between its ephemeral
private key and the primary ephemeral public key:

shareEphemeralSecret = ECDH(
linkCodePairingCompanionADVEphemeralKeyPairPriv,
linkCodePairingDecryptedPrimarEphemeralPub

)

The companion generates a random 32-byte
linkCodePairingEphemeralRootSecret.

The companion creates a key bundle composed of
linkCodePairingEphemeralRootSecret from the previous step,
its own public identity key (Iompanion) @and the primary’s public Identity
Key (I,:inary) received as a part of Primary hello as described in step 14.

keyBundle = Icompamion || IprimaryH
linkCodePairingEphemeralRootSecret;

Companion uses HKDF to create a 32 byte AES256 encryption key
(1inkCodePairingKeyBundleEncryptionKey) from the shared
secret (shareEphemeralSecret) derived in step 17 and a new 16
byte random salt (companionFinishKdfSalt).

linkCodePairingKeyBundleEncryptionKey =
HKDF-SHA256 (

ikm=shareEphemeralSecret,
info="1link_code_pairing_key_bundle_encryption_key",

10

WhatsApp Encryption Overview

AUGUST 19, 2024

salt=companionFinishKdfSalt,
length=32,
)

22. Companion uses 1inkCodePairingKeyBundleEncryptionKey
derived above and new 12 byte random 1V,
companionFinishRandomIV to encrypt the keyBundle derived in
step 19 using AES256 in GCM mode.

linkCodePairingEncryptedKeyBundle =
AES-GCM-ENCRYPT (
aes_key=1inkCodePairingKeyBundleEncryptionKey,
payload=keyBundle,
iv=companionFinishIV,

)

23. The companion loads its own private identity key
(companionIdentityPrivate)and computes the final Linking
Secret Key (1inkingSecretKey). The Linking Secret Key
(1inkingSecretKey) described here is analogous t0 L oupanion
referenced in step 1 of the QR code flow (Option 1) and used in the
same modalities in subsequent linking steps.

identitySharedSecret =
ECDH(companionIdentityPrivate, I, i)

var linkingSecretKeyMaterial = shareEphemeralSecret
|| identitySharedSecret ||
linkCodePairingEphemeralRootSecret;

var linkingSecretKey (Lgompanion) =
HKDF-SHA256 (length=32,

ikm=1linkingSecretKeyMaterial,
info="adv_secret',
salt=null

)

24. The companion constructs 1inkCodePairingWrappedKeyBundle
by prepending companionFinishKdfSalt, and
companionFinishIVto linkCodePairingEncryptedKeyBundle
derived above. The companion sends
linkCodePairingWrappedKeyBundle to the primary device.

11 WhatsApp Encryption Overview

AUGUST 19, 2024

On the primary device:

25.

26.

27.

Upon receipt of Companion Finish, primary will read and save first 32
bytes of 1inkCodePairingWrappedKeyBundle as
companionFinishKdfSalt, the next 12 bytes as
companionFinishIV, and remaining as
linkCodePairingEncryptedKeyBundle. The primary decrypts the
key bundle (1inkCodePairingEncryptedKeyBundle) by performing
the same key derivation made by the companion in step 11. It stores the
decrypted value as 1inkCodePairingKeyBundle. If AES-GCM
decryption fails, it indicates the user may have entered the incorrect
linkCodePairingSecret, during step 8. Primary will allow users to
re-enter 1inkCodePairingSecret two additional times, triggering
new rounds of Primary Hello and Companion Finish as previously
described.

linkCodePairingKeyBundleDecryptionKey = HKDF-SHA256(
ikm=shareEphemeralSecret,
info="1link_code_pairing_key_bundle_encryption_key",
salt=companionFinishKdfSalt,

length=32,

);

linkCodePairingEncryptedWrappedKeyBundle = AES-GCM-DECRYPT(

aes_key=1inkCodePairingKeyBundleDecryptionKey,
payload=1inkCodePairingEncryptedKeyBundle,
iv=companionFinishIV,

)

The primary asserts the integrity of key materials by comparing its own
copy of the companion public identity key and its own public identity key
against corresponding values in 1inkCodePairingKeyBundle. If the
two keys differ, the primary device will abort pairing. Failure during this
stage is inedible for retry with existing 1inkCodePairingSecret.

The primary can now calculate the final secret similarly to how the
companion did it in step 14.

At this point the primary has the ephemeral Linking Secret Key (L onpanion) @nd
can continue the pairing from step 3 of section “Option 1: Link Using a QR-Code”.

12

WhatsApp Encryption Overview

AUGUST 19, 2024

Option 3: Linking Cloud API Using a Network Call

Option 3 is only available to WhatsApp Business app users who want to link
Cloud API as a companion. This option is a variation of Option 1 where steps 1
and 2 from option 1 are merged as follows:

1. The primary device fetches the QR code from Cloud API through a
secure call to Meta’s infrastructure.

The process then continues from step 3 from Option 1.

Initiating Session Setup

In order for WhatsApp users to communicate with each other securely and
privately, the sender client establishes a pairwise encrypted session with each of
the recipient’s devices. Additionally, the sender client establishes a pairwise
encrypted session with all other devices associated with the sender account.
Once these pairwise encrypted sessions have been established, clients do not
need to rebuild new sessions with these devices unless the session state is lost,
which can be caused by an event such as an app reinstall or device change.

WhatsApp uses this “client-fanout” approach for transmitting messages to
multiple devices, where the WhatsApp client transmits a single message N
number of times to N number of different devices. Each message is individually
encrypted using the established pairwise encryption session with each device.

To establish a session:

1. Theinitiating client (“initiator”) requests the public Identity Key, public
Signed Pre Key, and a single public One-Time Pre Key for each device of
the recipient and each additional device of the initiating user (excluding
the initiator).

2. The server returns the requested public key values. A One-Time Pre Key
is only used once, so it is removed from server storage after being
requested. If the recipient’s latest batch of One-Time Pre Keys has been
consumed and the recipient has not replenished them, no One-Time Pre
Key will be returned. Additionally, for each companion device (for both
the initiator's account and the recipient’s), the server also returns the
Linking Metadata (L cra0at2), ACcount Signature (Aq;gn,:.re) @and Device
signature (Dq;gnature) that was uploaded by the companion device when
linked.

3. For every returned key set for a companion device, the initiator needs to
verify Aqignature by CURVE25519_VERIFY_SIGNATURE (I
0x0600 || Lyetasata || Tconpanion) » aNd Dasgnazure DY
CURVE25519_VERIFY_SIGNATURE (Icompanion: ©0%0601 || Licradata

primary

13

WhatsApp Encryption Overview

AUGUST 19, 2024

Il Teompanion || Iprimary) - If @any of the verification fails for a
companion device, the initiator terminates the encryption session
building process immediately and will not send any messages to that
device.

After getting the keys from server and verifying each device identity, the initiator
starts to establish the encryption session with each individual device:

1. The initiator saves the recipient’s Identity Key as I ...ipient the
Signed Pre Key as S .ipient, and the One-Time Pre Key as

Orecipient-
2. The initiator generates an ephemeral Curve25519 key pair, E;;i+1at0r-
3. Theinitiator loads its own Identity Key as I, itiator

4. Theinitiator calculates a master secret asmaster_secret =
ECDH (Iinitiator) Srecipient) | | ECDH (Einitiator) Irecmlemt) | |
ECDH (Einitiator) Srecipient) | | ECDH (Eimitiator) orecipiemt) . If there
isnoOne Time Pre Key, the final ECDH is omitted.

5. The initiator uses HKDF to create a Root Key and Chain Keys from
themaster_secret.

Receiving Session Setup

After building a long-running encryption session, the initiator can immediately
start sending messages to the recipient, even if the recipient is offline.

Until the recipient responds, the initiator includes the information (in the header
of all messages sent) that the recipient requires to build a corresponding
session. This includes the initiator's (E;,i+i0r aNd L;nitiat0r). Additionally, if the
initiator is a companion device, it also includes its I, 1.0y, Lnetadatar Asignature @and
D

signature-
When the recipient receives a message that includes session setup information:

1. If the sender is a companion device, the recipient needs to verify
Asignature DY CURVE25519_VERIFY_SIGNATURE (I, ipary, 0x0600 ||

I—metadata | | Icompanion)r and D51gnature by
CURVE25519_VERIFY_SIGNATURE (I ompanion, ©%06071 || Licragata
[l Teompanion || Iprimary)- If @any of the verifications fail, the receiver

stops building the encryption session and rejects the message from
that sender device.

14

WhatsApp Encryption Overview

AUGUST 19, 2024

2. The recipient calculates the corresponding master_secret using its
own private keys and the public keys advertised in the header of the
incoming message.

3. Therecipient deletes the One-Time Pre Key used by the initiator.

4. The initiator uses HKDF to derive a corresponding Root Key and
Chain Keys fromthe master_secret.

Exchanging Messages

Once a session has been established, clients exchange messages that are
protected with a Message Key using AES256 in CBC mode for encryption and
HMAC-SHA256 for authentication. The client uses client-fanout for all the
exchanged messages, which means each message is encrypted for each device
with the corresponding pairwise session.

The Message Key changes for each message transmitted, and is ephemeral,
such that the Message Key used to encrypt a message cannot be reconstructed
from the session state after a message has been transmitted or received.

The Message Key is derived from a sender's Chain Key that “ratchets”
forward with every message sent. Additionally, a new ECDH agreement is
performed with each message roundtrip to create a new Chain Key. This
provides forward secrecy through the combination of both an immediate “hash
ratchet” and a round trip “DH ratchet.”

Calculating a Message Key from a Chain Key

Each time a new Message Key is needed by a message sender, it is calculated
as:

1. Message Key = HMAC-SHA256(Chain Key, 0x01).

2. TheChain Key isthen updated as Chain Key =
HMAC-SHA256 (Chain Key, 0x02).

This causes the Chain Key to “ratchet” forward, and also means that a stored
Message Key can't be used to derive current or past values of the Chain Key.

Calculating a Chain Key from a Root Key

Each time a message is transmitted, an ephemeral Curve25519 public key is
advertised along with it. Once a response is received, a new Chain Key and
Root Key are calculated as:

15 WhatsApp Encryption Overview

AUGUST 19, 2024

1. ephemeral_secret = ECDH(Ephemeralyenge,
Ephemeral ccipient)-

2. Chain Key, Root Key =
HKDF (Root Key, ephemeral_secret).

A chain is only ever used to send messages from one user, so message keys are
not reused. Because of the way Message Keys and Chain Keys are
calculated, messages can arrive delayed, out of order, or can be lost entirely
without any problems.

In Chat Device Consistency

In end-to-end encrypted chats, for each outgoing message to a pairwise
encryption session, including those sent during session setup, the sender
includes information about the list of the sender and receiver’s devices inside the
encrypted payload. This information includes:

1. The timestamp of the sender’s most recent Signed Device List

2. Aflagindicating whether the sender has any companion devices
currently linked

3. Aflagindicating if any of the sender's companion devices are Cloud API.
4. The timestamp of the recipient’s most recent Signed Device List

5. Aflag indicating whether the recipient has any known linked companion
devices

6. A flagindicating if any of the recipient’'s companion devices are Cloud
API.

When performing “client-fanout” to your own devices, 3 and 4 above continue to
refer to the recipient of the original message.

Transmitting Media and Other Attachments

Large attachments of any type (video, audio, images, or files) are also end-to-end
encrypted:

1. The WhatsApp user’s device sending a message (“sender”) generates
an ephemeral 32 byte AES256 key, and an ephemeral 32 byte
HMAC-SHA256 key.

2. The sender encrypts the attachment with the AES256 key in CBC mode
with a random IV, then appends a MAC of the ciphertext using
HMAC-SHA256.

16

WhatsApp Encryption Overview

AUGUST 19, 2024

3. The sender uploads the encrypted attachment to a blob store.

4. The sender transmits a normal encrypted message to the recipient that
contains the encryption key, the HMAC key, a SHA256 hash of the
encrypted blob, and a pointer to the blob in the blob store.

5. All receiving devices decrypt the message, retrieve the encrypted blob
from the blob store, verify the SHA256 hash of it, verify the MAC, and
decrypt the plaintext.

Group Messages

End-to-end encryption of messages sent to WhatsApp groups utilize the
established pairwise encrypted sessions, as previously described in the “Initiation
Session Setup” section, to distribute the “Sender Key” component of the Signal
Messaging Protocol.

When sending a message to a group for the first time, a “Sender Key” is
generated and distributed to each member device of the group, using the
pairwise encrypted sessions. The message content is encrypted using the
“Sender Key”, achieving an efficient and secure fan-out for the messages that are
sent to groups.

The first time a WhatsApp group member sends a message to a group:
1. The sender generates a random 32-byte Chain Key.
2. The sender generates a random Curve25519 Signature Key key pair.

3. The sender combines the 32-byte Chain Key and the public key from
the Signature Key intoa Sender Key message.

4. The sender individually encrypts the Sender Key to each member of
the group, using the pairwise messaging protocol explained previously.

For all subsequent messages to the group:

1. The sender derives a Message Key from the Chain Key, and updates
the Chain Key.

2. The sender encrypts the message using AES256 in CBC mode.

3. The sender signs the ciphertext using the Signature Key.

4. The sender transmits the single ciphertext message to the server, which
does server-side fan-out to all group participants.

17

WhatsApp Encryption Overview

AUGUST 19, 2024

The “hash ratchet” of the message sender’s Chain Key provides forward
secrecy. Whenever a group member leaves, all group participants clear their
Sender Key and start over.

In Chat Device Consistency information is included when distributing a “Sender
Key” and then excluded from the subsequent messages encrypted with the
Sender Key.

See Implementation with Cloud API for details on Groups on Cloud API.

Message Add-ons in Community
Announcement Groups

Group members cannot send regular messages in Community Announcement
Groups but are able to interact with messages such as reacting to them by
sending Message Add-ons. In order to improve the performance of Community
Announcement Groups we will use Add-on Sender Keys instead of traditional
Group Sender Keys to encrypt the Add-ons. When an admin sends a message
into a Community Announcement Group it will be encrypted with a traditional
“Group Sender Key” as described in “Group Messages”, the end-to-end encrypted
message payload will also contain a random key “Message Secret”.

End-to-end encryption of add-ons sent to WhatsApp Community Announcement
Groups utilize the established pairwise encrypted sessions, as previously
described in the “Initiation Session Setup” section, to distribute a dedicated
“Add-on Sender Key” component of the Signal Messaging Protocol. When
sending an Add-on to a Community Announcement Group for the first time, an
“Add-on Sender Key” is generated and distributed to each member device of the
group, using the pairwise encrypted sessions. The Add-on content is encrypted
using a key derived from the target message’'s “Message Secret” and then
encrypted again using the “Add-on Sender Key”, achieving an efficient and secure
fan-out for the Add-ons that are sent to Community Announcement Groups.

The first time a WhatsApp group member sends an Add-on to a Community
Announcement Group::

1. The sender generates a random 32-byte Chain Key.
2. The sender generates a random Curve25519 Signature Key key pair.

3. The sender combines the 32-byte Chain Key and the public key from
the Signature Key into an Add-on Sender Key message.

18

WhatsApp Encryption Overview

AUGUST 19, 2024

4. The sender individually encrypts the Add-on Sender Key to each
member of the community announcement group, using the pairwise
messaging protocol explained previously.

For all Add-ons sent to a community announcement group:

1. The sender derives an encryption key from the target message’s
Message Secret Add-on Target Key = HKDF(length=32,
key=Target Message Secret, info=Target Message
Identifier || Target sender Identifier || Add-on
Sender Identifier || “Add-on type string”).

2. The sender then encrypts the Add-on content with Add-on Target
Key using AES-256-GCM to produce inner ciphertext.

3. The sender derives a Message Key from the Chain Key, and updates
the Chain Key

4. The sender encrypts the inner ciphertext using AES256 in CBC mode to
produce outer ciphertext.

5. The sender signs the outer ciphertext using the Signature Key.

6. The sender transmits the single outer ciphertext Add-on message to the
server, which does server-side fan-out to all group participants.

The “hash ratchet” of the Add-on sender’'s Chain Key in conjunction with the
target message’'s message secret provides forward secrecy. Whenever a group
member leaves, all Admins clear their Group Sender Key and start over. Group
members, including admins, will not clear their Add-on Sender Key when a group
member leaves and instead will continue to use the existing key to encrypt for the
remaining participants of the group. When promoted to admin group members
will generate a new regular Group Sender Key but will not update their Add-on
Sender Key.

Sender Side Backfill

As described above, in WhatsApp, because each message is encrypted for each
device with the corresponding pairwise session, the sender client must specify all
the destination devices at the sending time. Any device which is not listed at the
sending time will not be able to receive the encrypted message. Each client
maintains a list of verified companion devices for WhatsApp accounts the user
communicates with, as well as all other devices associated with its own account,
and uses this list to specify the destination devices at the sending time.

However, when sending a message, it is possible for a client to miss valid
companion devices if its maintained device list is out-of-date. The mechanism
“Sender Side Backfill” is designed so that these missed devices may recover from

19 WhatsApp Encryption Overview

AUGUST 19, 2024

permanently missing the entire message. When WhatsApp receives the
encrypted message from the sender, it compares the hash of all the destination
devices listed by the sender, to the hash of server-side device records of these
accounts. If there is a mismatch between two hash values, the server will notify
the sender to update the devices list for itself and all the recipient accounts. The
sender client will verify all fetched new companion devices, establish the
pairwise sessions with those devices using the same method described in the
“Initiating Session Setup” section, encrypt and resend the original message to
these new devices.

To ensure the confidentiality of the message, this backfill mechanism is only
allowed within a short duration after the initial message sending. Additionally, the
backfill message will not be sent to any companion device which failed the
device verification. Moreover, during the backfill process, if a recipient registers
on a new phone, all its companion devices will be excluded from the resending
list. Therefore, the resend message will not be sent to any companion device of a
recipient with a changed identity key. Finally, the sender will not honor a request
to backfill a message to Cloud APl when it is linked as a companion.

Message History Syncing

Immediately after linking a companion device, the primary device end-to-end
encrypts a copy of messages from recent chats.

The primary device will also include a copy of the user’s stored public identity key
when copying messages for one-to-one chats. This process, called Messaging
History Syncing, generates bundles of the end-to-end encrypted messages and
other data for the chat using the same mechanism of encryption as described in
the “Transmitting Media and Other Attachments” section. Steps 1 through 5
explain the specifics regarding key, IV, mac generation, as well as the encryption,
transmission, and decryption of these end-to-end encrypted bundles. Once a
companion device has successfully decrypted, unpacked, and stored all the
messages of a given bundle, all the associated data (including the downloaded
encrypted bundle blob, the pointer to the encrypted blob storage, and all the keys)
are deleted from the companion device.

See Implementation with Cloud API for details on Message History Syncing with
Cloud API.

Call Setup

Personal WhatsApp voice and video calls, and those with the WhatsApp Business
App, are end-to-end encrypted. When a WhatsApp user initiates a voice or video
call:

20

WhatsApp Encryption Overview

AUGUST 19, 2024

1. The initiating client (“initiator”) establishes encrypted sessions with
each of the devices of the recipient (as outlined in the Initiating Session
Setup Section), if these haven't been set up yet.

2. Theinitiator generates a set of random 32-byte SRTP master secrets for
each of the recipient’s devices.

3. Theinitiator sends an incoming call message to each of the devices of
the recipient. Each recipient’s device receives this message, which
contains the end-to-end encrypted SRTP master secret.

4. If the responder answers the call from one of the devices, a SRTP
encrypted call is started, protected by the SRTP master secret generated
for that device.

The SRTP master secret is persisted in memory on the client device and used

only during the call. WhatsApp servers do not have access to the SRTP master
secrets.

See Implementation with Cloud API for details on calls involving Cloud API.

Group Calling

WhatsApp group calls are end-to-end encrypted. Unlike one-to-one calls that
setup keys only once, in group calls, keys are reset whenever a participant joins
the call or leaves the call.

Key reset in group calls is achieved by the following steps:

1. When a participant joins or leaves the call, the WhatsApp server
arbitrarily selects one of the active participants as the key distributor.

2. The key distributor generates a random 32-byte SRTP master secret.

3. The key distributor establishes an encrypted session with the active
device of each connected participant in the current group call (as
outlined in the Initiating Session Setup Section), if these haven't been
setup yet.

4. The key distributor initiates one message with end-to-end encrypted
SRTP master secret for each participant. When these messages are
delivered, a SRTP encrypted group call ensues.

Note that in a group call, a participant becomes active when they initiate a group
call or accepts the group call invitation from any of their devices. Therefore each
active participant has exactly one active device.

21

WhatsApp Encryption Overview

AUGUST 19, 2024

The SRTP master secret is persisted in-memory, and is overwritten when a new
SRTP master secret is generated and delivered. To continue decrypting data
encrypted with the old key while all participants transition to the new key, the old
"SRTP’ crypto session is kept alive for up to 5 seconds after group update.

Whatsapp servers do not have access to them, and cannot access the actual
audio and video media. The SRTP master secret for the call is not distributed to
the Cloud API when it’s linked as a companion.

To ensure call quality and to avoid race conditions from conflicting user actions,
the WhatsApp server stores the state of the current group call (for example:
participant list, call initiator) and media metadata (e.g. resolution, media type).
With this information, the WhatsApp server is able to broadcast participant
membership changes and select one as key distributor to initiate key reset.

Statuses

WhatsApp statuses use the same encryption protocol as group messages. The
first status sent to a given set of devices follows the same sequence of steps as
the first time a WhatsApp group member sends a message to a group. Similarly,
subsequent statuses sent to the same set of devices follow the same sequence
of steps as all subsequent messages to a group. When a status sender removes
a receiver either through changing status privacy settings or removing a number
from their address book, the status sender clears their Sender Key and starts
over.

Sender keys are not distributed to Cloud API when it is linked as a companion.

Live Location

Live location messages and updates are encrypted in much the same way as
group messages. Currently, sending and receiving live locations is only supported
on primary devices. The first live location message or update sent follows the
same sequence of steps as the first time a WhatsApp group member sends a
message to a group. But, live location demands a high volume of location
broadcasts and updates with lossy delivery where receivers can expect to see
large jumps in the number of ratchets, or iteration counts. The Signal Protocol
uses a linear-time algorithm for ratcheting that is too slow for this application.
This document offers a fast ratcheting algorithm to solve this problem.

Chain keys are currently one-dimensional. To ratchet N steps takes N
computations. Chain keys are denoted as CK(iteration count) and
message keys as MK(iteration count).

22

WhatsApp Encryption Overview

AUGUST 19, 2024

CK(0)

CK(1)

!
CK(M-1) — MK(M-1)

Consider an extension where we keep two chains of chain keys:

CK,(B) — CKy(B)

! !
CKy (1) — CKy(1)
4
!

CK,(M-1) — MK(M-1)

In this example, message keys are always derived from CK,. A receiver who
needs to ratchet by a large amount can skip M iterations at a time (where M is an
agreed-upon constant positive integer) by ratcheting CK, and generating a new
CK,:

CK1(0)

!

CK1(1) — CK2(8) — MK(M)

1 1

CK1(2) CK2(1)

A value of CK, may be ratcheted up to M times. To ratchet N steps takes up to
[N=M] + M computations.

After a sender creates a message key and encrypts a message with it, all chain
keys on the path that led to its creation must be destroyed to preserve forward

secrecy.
CKa{)
1
CKi{1) — GCkof@) — MK(M)
l 1

CK1(2) CKz2(1)

23 WhatsApp Encryption Overview

AUGUST 19, 2024

Generalizing to D dimensions, a sender can produce D initial chain keys. Each
chain key but the first is derived from the preceding chain key using a distinct
one-way function: these are the right-pointing arrows in the diagram above.
Senders distribute all D chain keys to receivers who need them, except as noted
below.

RNG = CK,(®) = CK,(8) = .. - CKD(@)

Legal values for D are positive powers of two less than or equal to the number of
bits in the iteration counter: 1, 2, 4, 8, 16, and 32. Implementors select a value of
D as an explicit CPU-memory (or CPU-network bandwidth) tradeoff.

If a chain key CK; (for j in [1, D]) has an iteration count of M, it cannot be used.
This algorithm restores the chain keys to a usable state:

1. If j =1, fail because the iteration count has reached its limit.
2. Derive CK; from CK,_;.
3. Ratchet CK;_; once, recursing if necessary.

Moving from one iteration count to another never ratchets a single chain key
more than M times. Therefore, no ratcheting operation takes more than DxM
steps.

Signal uses different functions for ratcheting versus message key computation,
since both come from the same chain key. In this notation {x} refers to an array
of bytes containing a single byte x.

MK HmacSHA256 (CKj (1), {1})

CKj (i+1)

HmacSHA256 (CKj (1), {2})

Each dimension must use a different function. Keys are initialized as:

j =1 : CK1(@) RNG(32)
j > 1 : CKj(@) HmacSHA256(CKj-1(0), {j+1})

And ratcheted as:

CKj(i) = HmacSHA256(CKj(i-1), {j+1})

24

WhatsApp Encryption Overview

AUGUST 19, 2024

Chain Keys are not distributed to Cloud API when it’s linked as a companion.

App State Syncing Security

Introduction

App State Syncing enables a consistent experience across devices, and is
end-to-end encrypted. Prior to supporting companion devices, the WhatsApp
client was the sole owner and the source of truth for all client settings and other
data, referred to as App State. With the introduction of companion devices, App
State is synchronized between all of the user’s devices securely, using end-to-end
encryption.

Example App State Syncing client settings and other data include the following:

e Chat properties, such as Muted, Pinned, Deleted
e Message properties, such as Deleted for Me, Starred

e Contact-related properties, such as contact names, broadcast list
names

e Most recently used GIFs, stickers, emojis

App State does not include users’ message content, nor keys that could be used
to decrypt messages, nor settings that might impact the secrecy of messages.

The synchronization of App State between a user’s devices requires storage of
end-to-end encrypted data on the WhatsApp server to facilitate the transmission
between the different devices for the user’s account. WhatsApp servers do not
have access to the keys that could be used to decrypt the App State data that is
stored.

A Collection is a representation of several use-cases that are grouped together.
For example, various Chat Properties (see above) can be modeled as a single
Collection. Collections are implemented as a dictionary (a set of Index-Value
pairs) and are fixed to specific client versions.

Initially, Collections are empty. To modify a Collection, a client device submits a
Mutation which either sets a new Value for a given Index (SET Mutation), or
removes the pair from the Collection (REMOVE Mutation).

A group of Mutations submitted together constitute a Patch, which atomically
changes the Collection from version N to version N + 1. The server maintains an
ordered queue of Patches (Patch Queue), which consists of all Patches
submitted in the last X days.

25

WhatsApp Encryption Overview

AUGUST 19, 2024

A server-side process, called a Base Roller, periodically builds a Snapshot which
represents the state of the Collection after applying all Patches up until and
including the Patch with version N. The first Snapshot is built from the entire
Patch Queue, while subsequent Snapshots are built by applying new Patches to
the previous Snapshot. A Snapshot can be used to initialize a newly registered
device or to optimize the data traffic by sending a Snapshot instead of the list of
Patches.

App State Syncing is designed to guarantee the secrecy and integrity of the data
being synchronized. The pairwise encrypted sessions (as outlined in the Initiating
Session Setup Section) are used for transferring secret keys between different
devices of the same account.

See Implementation with Cloud API for details on App State Syncing Security
with Cloud API.

Terms

e Base Key -Input key material used to generate the keys used to
encrypt the data or provide its integrity.

e Index MAC Key - Key derived from the Base Key via HKDF and used
to compute the HMAC of the index.

e Value Encryption Key -Key derived from the Base Key via HKDF
and used to encrypt the combined Mutation index and value. The
encryption is done via AES-256 in CBC mode.

e Value MAC Key - Key derived from the Base Key via HKDF and used
to compute the HMAC of the combined Mutation index and value. Used
on the MAC stage of Encrypt-then-MAC approach to provide
authenticated encryption.

e Snapshot MAC Key - Key derived from the Base Key via HKDF and
used to provide anti-tampering for Snapshots generated by Base Roller.

e Patch MAC Key - Key derived from the Base Key via HKDF and used
to provide anti-tampering for Patches.

e KeyID - Unique identifier for the Base Key. Base Keys are rotated
periodically and when a device is removed from the account to provide
eventual future secrecy. An attacker in possession of a removed device
and access to the server can no longer decrypt the content of SET
Mutations submitted after the removal.

e Operation - Byte value which identifies a Mutation as SET or REMOVE.

Encryption of Mutations

In order for Base Roller to coalesce sequences of actions to the same index, it
needs the index submitted to the server to be deterministic. HMAC of the index is
used as an identifier of the index-value record the Mutations refers to. This also
makes sure that the indexes that the server sees have the same length and
prevents the server from guessing the record for which the Mutation is applied.

26

WhatsApp Encryption Overview

AUGUST 19, 2024

Values (together with indexes, as mentioned above) are encrypted using
standard authenticated encryption (described below) with random IVs.

Combined index and value plaintext are supplemented with arbitrary length
padding in order to enable some model of differential privacy on the type of the
records.

1. Generate the Index MAC Key, Value Encryption Key, Value
MAC Key, Snapshot MAC Key, and Patch MAC Key from Base
Key by means of HKDF.

2. Compute HMAC-SHA2-256 of the index.

3. Construct the plaintext by combining Index and Value with random
padding (used to obfuscate the size of the Mutation from the server).

4. Construct the associated data by concatenating Operation with
KeyID.

5. Apply Encrypt-then-MAC approach with AES-256-CBC keyed by
Value Encryption Key and HMAC-SHA2-512 keyed by Value
MAC Key.

6. MAC computed on Step 2, ciphertext computed on Step 5, together with
Operation and KeyID form an encrypted Mutation.

Anti-Tampering
The anti-tampering mechanisms described below are designed to prevent:

e Drop, reorder, or replay Mutation within a Patch

e Drop, reorder, or replay (including a construction of new Patches)
Patches within a Collection or even between the Collection

e Drop or replay Mutations within a Snapshot constructed by a Base Roller

Snapshot Integrity

The server periodically runs a Base Roller which compacts the Patch Queue into
a single Snapshot. Clients cannot predict when the Snapshot is going to be built
(at the extreme the Snapshots could be built on every Patch). Thus, clients
include an additional unforgeable checksum for each Patch in order to be able to
verify all possible Snapshots built by the server.

Our approach relies on a homomorphic hashing algorithm called LtHash. It has
the following two important properties:

27

WhatsApp Encryption Overview

AUGUST 19, 2024

e Set homomorphism: for any two disjoint sets Sand T, LtHash(S) +
LtHash(T) = LtHash(S U T).

e Collision resistance: it is difficult (computationally infeasible) to find
two distinct sets S and T for which LtHash(S) = LtHash(T).

A 1024-bit variant called LtHash16 and HKDF as an extensible output function
(XOF) is used. For each Collection, clients must maintain a 1024-bit value of
LtHash16 computed over the current Snapshot of the Collection. The MAC
computed over the content of plaintext index and value together with
authenticated data is used as input to the L tHash.

Upon receiving or constructing a new Patch, the set homomorphism property of
LtHash is used to compute the new 1024-bit value corresponding to the new
state (after applying the Patch in question):

e Assume that the current value of digest is CurrentlLtHash, and Patch
P is being processed.

e Build a set R of MACs of previous states of all records that are affected
(deleted with REMOVE or overwritten with a SET operation).

e Build a set A of MACs of all SET records (in encrypted form) in the Patch
P.

e Construct NewlL tHash =
LtHash16Add(LtHash16Subtract(CurrentlLtHash, R), A).
See below on how these operations are defined.

LtHash16Add operation mentioned above is defined as follows:

LtHash16Add(H, A):
R =H
for Item in A:
R = LtHash16AddSingle(R, Item)
return R

LtHash16AddSingle(H, I):
X = HKDF (1824, "WhatsApp Patch Integrity”, I)
return PointwiseAdd16(H, X)

where PointwiseAdd16 performs pointwise overflowing addition of two
1024-bit byte arrays interpreting them as arrays of 16-bit unsigned integers.
Operation LtHash16Subtract is defined similarly to L tHash16Add replacing
pointwise addition with pointwise subtraction.

Further, a MAC over the computed value of L tHash16 concatenated with 8 byte
Patch version and the name of the Collection is computed:

28

WhatsApp Encryption Overview

AUGUST 19, 2024

SnapshotMAC = HMAC_SHA_256(
SnapshotMACKey,
LtHash ||
TO_64_BIT_NETWORK_ORDER(PatchVersion) ||
TO_UTF8(CollectionName)

)

Patch Queue Integrity

To prevent tampering with content of a Patch, clients must compute the HMAC
over the 32-byte MACs of each individual Mutation that is part of the Patch
together with the Patch version number and Collection Name:

PatchMAC = HMAC_SHA_256(
PatchMACKey,
SnapshotMAC | |
MutationMAC_0 |
MutationMAC_1 |
a0 [
MutationMAC_N ||
TO_64_BIT_NETWORK_ORDER(PatchVersion) ||
TO_UTF8(CollectionName)

where MutationMAC_1i is the last 32 bytes of value ciphertext of Mutation #i in
the Patch, and PatchVersion is the version of the Patch about to be submitted
(i.e. latest known version of the Collection plus one). Note that upon receiving a
Patch, the client must verify it, including the expected version of the Patch (which
must match the server-assigned version).

Both values PatchMAC and SnapshotMAC are included in the Patch and
submitted to the server.

Verification

After downloading a Patch, clients must first verify its correctness by
recomputing the PatchMAC and comparing it with the value included with the
Patch. After that, clients verify that SnapshotMAC is correct as well by repeating
the steps outlined above.

The Base Roller process on the server must preserve SnapshotMAC (and the
KeyID used to generate it) of the latest Patch that was used to construct the
Base Rolled Snapshot. This value is used by a client that received a Snapshot to
independently verify its integrity by applying LtHash16 over all of its records and
further compute the MAC as described above.

29

WhatsApp Encryption Overview

AUGUST 19, 2024

Key Rotation

A Key Rotation involves a client randomly generating a new key tuple and
broadcasting it to all other devices. In the event of Key Rotation, all future
Mutations must not use any previous key version. To preserve the ability of the
server to coalesce the Mutations applied to a record when updating across a key
boundary, a client must submit a REMOVE Mutation with the old key and a SET
Mutation (if needed) with the new key.

It is notable that a simultaneous REMOVE and SET occurring as the key version
increases will be relatively easy for the server to correlate as equating to an
update of the record. In collusion with anyone with access to the old key,
WhatsApp would therefore be able to determine with high confidence the value of
the new index; and might be able to assume that this means it has been updated.

The following two mechanisms are used to combat this:

1. Post-Rotation Update Obfuscation - When submitting a Mutation to the
server, clients will use this opportunity to rotate some other number of
records, ensuring that WhatsApp cannot determine which of the old
indexes was being updated, and cannot directly map any of the old
records to which new record represents them.

2. Asynchronous Key Catch-Up - Ensures that after a Key Rotation, there
will be at some point in the future when no current records are
encrypted with the preceding key(s). This means that on some cadence,
clients will issue a series of SET and REMOVE to re-encrypt old records
under a new key version, without updating the actual plaintext values.
Catch-Up updates are indistinguishable from a logical UPDATE
operation, so that the server in collusion with a removed device can
never determine when an old record is being updated.

The key must be rotated whenever a device is being unregistered. Additionally,
clients rotate the key periodically (for example once a month).

Each device maintains a list of the encryption keys together with additional data:
1. KeyData - Actual base key bytes
2. KeyID-ID of the key

3. Fingerprint - Data structure which identifies a list of devices existing
at the moment when the key was generated (and thus was shared with)

4. Timestamp - Time when the key was created

The KeyID is composite and consists of 4 byte Epoch and 2 byte DeviceID.
Epoch is selected randomly between 1 and 65536 by the primary devices during

30 WhatsApp Encryption Overview

AUGUST 19, 2024

the registration of the first companion device, and after that increases by 1 every
time a device rotates a key. The DeviceID component of the KeyID is used to
resolve races between several devices rotating the key at the same time, so that
all keys will receive unique IDs. To settle on a single key after such an event,
clients prefer the key with the smallest DeviceID component when Epoch
components are equal. Otherwise, always prefer the KeyID with the largest
Epoch. Additionally, one (or in rare cases several) encryption keys can be active
at any given time.

Key Rotation must happen under the following conditions:

If a client detects that a previously known device was removed, it must
locally mark all active encryption keys as expired.

Upon receiving an AppStateSyncKeyShare message mark all keys
with smaller Epoch as expired.

Upon receiving a Mutation in any Collection mark all keys with a smaller
Epoch as expired.

When a client wants to submit a new Patch to the server it first must
check the list of known keys. If there is one that is still active it uses it.
Otherwise, it performs the Key Rotation. To rotate the key:

1. Generate a new KeyID by concatenating DeviceID with an
incremented Epoch (maximum value among all known
encryption keys).

2. Generate new key material from CSPRNG.

3. Generate anew Fingerprint from the current registration
data.

4. Persist the key information and send it to all other devices
using the corresponding pairwise encrypted sessions.

5. Use the key to encrypt the Mutations and submit them to the
server.

In some cases, clients cannot determine whether a key is still valid
based on event ordering alone. To compute whether the last known
active key is valid or not, clients compare the key's Fingerprint with
the current device registration data.

If a device receives a Mutation from the server and the KeyID is not known, a
device can request to resend the encryption keys from other devices.

To guarantee that encryption keys are not shared with untrusted devices, all

31

WhatsApp Encryption Overview

AUGUST 19, 2024

client applications only send them via authenticated pairwise encrypted
sessions:

1. While performing Key Rotation, a device must send the new key to all
other devices which are known to be authorized by the primary.

2. When a device receives a new key from a device which is not authorized
by the primary this key is ignored.

To make sure that other devices will not inadvertently use an encryption key that
should be expired on device removal, the device that performs the removal (the
companion device itself or primary device) submits a Patch into all Collections
marking all the current keys as expired. This Patch informs other devices that
encryption keys with epoch less or equal to the provided epoch should not be
used going forward.

Verifying Keys

WhatsApp users additionally have the option to verify the keys of their devices
and the devices of the users with which they are communicating in end-to-end
encrypted chats, so that they are able to confirm that an unauthorized third party
(or WhatsApp) has not initiated a man-in-the-middle attack. Verification can be
done by scanning the QR code or by comparing the 60-digit number between two
primary devices. WhatsApp users can also verify individual companion devices
manually by using a primary device to check the same QR code or 60-digit
number.

The QR code contains:
1. Aversion.
2. The user identifier for both parties.

3. The full 32-byte public Identity Key or SHA-512 hash forall
devices of both parties, except linked Cloud API companions.

4. Flagindicating if the party has linked to Cloud API .

When either device scans the other’s QR code, the keys and the Cloud API
companion flag are compared to ensure that what is in the QR code matches the
Identity Key and the Cloud APl companion flag as retrieved from the server.

The 60-digit number is computed by concatenating the two 30-digit numeric
fingerprints for each user’s device Identity Keys. To calculate a 30-digit
numeric fingerprint:

32

WhatsApp Encryption Overview

AUGUST 19, 2024

1. Lexicographically sort public Identity Keys for all of the user’s devices,
except any device linked to Cloud API and concatenate them.

2. Iteratively SHA-512 hash the sorted Identity Keys and user identi-
fier 5200 times.

3. Take the first 30 bytes of the final hash output.
4. Split the 30-byte result into six 5-byte chunks.

5. Convert each 5-byte chunk into 5 digits by interpreting each 5-byte
chunk as a big-endian unsigned integer and reducing it modulo 100000.

6. Concatenate the six groups of five digits into thirty digits.

For users wanting to verify keys with WhatsApp Business app users who have
linked to Cloud API:

e the QR code can be used to validate the presence of a linked Cloud API
companion

e the verification screen will clearly indicate that they are talking to a
WhatsApp Business user who has linked with Cloud API

e the 60-digit code can be used to verify all devices except a Cloud API
companion

Companion Device Removal

Companion devices can log themselves out from a WhatsApp account, may be
logged out by the user’s primary device, or may be logged out by the WhatsApp
server. When a primary device logs out or detects the log out of one or more of
its companion devices, while one or more companions remain linked, it generates
and uploads new Signed Device List Data removing the previously authorized
device.

To update the signed device list:

1. The primary detects a device removal and loads its own Identity Key as
Iprimary'

2. The primary generates updated Device List Data containing the currently
linked devices, as ListData.

3. The primary generates a Device List Signature for the updated Device
List Data, ListSignature = CURVE25519_SIGN(I, ipary, 0X0602
|| ListData).

33 WhatsApp Encryption Overview

AUGUST 19, 2024

4. The primary sends ListData and ListSignature to WhatsApp
server. See “Transport Security” for information about the secure
connection between WhatsApp clients and servers.

Even if no device removal has been detected, while one or more companions
remain linked, primary devices will periodically upload updated Signed Device List
Data following the above steps to produce a signature with an updated
timestamp.

See Implementation with Cloud API for details on Companion Device Removal
with Cloud API.

Signed Device List Expiry

In end-to-end encrypted chats, Signed Device Lists are expired with a Time to Live
of 35 days or less, except for Cloud API, companion which will have a different
TTL. Clients will only send and receive messages and calls with the primary
device of an account with an expired Signed Device List. Once an updated Signed
Device List is received with a more recent timestamp, senders will once again
communicate with a user’s linked companion devices.

On receipt of In Chat Device Consistency Data with an updated timestamp for the
sender’s device list, receiving devices reduce the TTL of the sender’s current
device list to 48 hours or less (except for Cloud API which will have a different
time) from receipt of the message. In order to maintain message reliability the
reduced TTL will not be enforced until the receiving client comes online after the
48 hour window.

Companion Device Compromise

The Time to Live of Device List Signatures, and In Chat Device Consistency
revoke the associated signed device lists after 35 days and 48 hours respectively
(except for Cloud API companion which will have different expiries and TTLs). If a
companion device’s private keys become compromised the compromised device
should no longer be used, and removed from the account. Devices are revoked
automatically after their removal to limit the potential for a third party who
compromised the device colluding with WhatsApp to continue to send and
receive messages from the previously linked account. The primary device’s
identity key pair can be re-generated by deleting and reinstalling WhatsApp on
your primary device to revoke all devices immediately.

34

WhatsApp Encryption Overview

AUGUST 19, 2024

Transport Security

Communication between WhatsApp clients and WhatsApp chat servers is
layered within a separate encrypted channel using Noise Pipes with Curve25519,
AES-GCM, and SHA256 from the Noise Protocol Framework for long running
interactive connections.

This provides clients with the following properties:
1. Extremely fast lightweight connection setup and resume.

2. Encrypts metadata to hide it from unauthorized network observers. No
information about the connecting user’s identity is revealed.

3. No client authentication secrets are stored on the server. Clients
authenticate themselves using a Curve25519 key pair, so the server only
stores a client’s public authentication key. If the server’s user database
is ever compromised, no private authentication credentials will be
revealed.

Note: In cases where a business delegates operation of their WhatsApp Business
API to a vendor, that vendor will have access to their private keys - including if
that vendor is Meta. However, these private keys will still not be stored on the
WhatsApp chat server. See below for details.

Defining End-to-End Encryption

WhatsApp defines end-to-end encryption as communications that remain
encrypted from a device controlled by the sender to one controlled by the
recipient, where no third parties, not even WhatsApp or our parent company
Meta, can access the content in between. A third party in this context means any
organization that is not the sender or recipient user directly participating in the
conversation.

WhatsApp does not consider communications with Meta services, or
communications with businesses using Cloud API, to be end-to-end encrypted.
See the Implementation with Cloud API section below for more details.

35

WhatsApp Encryption Overview

AUGUST 19, 2024

Implementation on WhatsApp
Services

When it comes to two people communicating on their phones or computers
using WhatsApp Messenger or the WhatsApp Business app, each person’s
WhatsApp endpoint is running on a device they control.

M £

WhatsApp User WhatsApp User

Some organizations may use the on-premise WhatsApp Business API, an
application that can be deployed as a WhatsApp endpoint on a server. The API
allows those organizations to programmatically send and receive messages.

WhatsApp considers communications with on-premise WhatsApp Business API
users who manage the API endpoint on servers they control to be end-to-end
encrypted since there is no third-party access to content between endpoints.

&

SIGNAL ENCRYPTED

. i.
3 B

— Organization

WhatsApp User

Some organizations may choose to delegate management of their on-premise
WhatsApp Business API endpoint to a vendor. In these instances, communication
still uses the same Signal protocol encryption and clients on or after version
v2.31 are configured to generate private keys within the vendor-controlled API
endpoint. However, because the on-premise WhatsApp Business APl user has

36 WhatsApp Encryption Overview

AUGUST 19, 2024

chosen a third party to manage their endpoint, WhatsApp does not consider
these messages end-to-end encrypted.

ne Vendor Organization
WhatsApp User

Implementation with Cloud API

As of 2021, organizations could start using Cloud APl hosted by Meta to send
and receive messages via WhatsApp. In 2023, organizations could use Cloud API
to make/receive calls. Since such communications are not delivered directly to
an endpoint controlled by the organization, WhatsApp does not consider
communications with businesses using Cloud API to be end-to-end encrypted.

Below are the relevant implementation details:

App State Syncing Security: If a user links Cloud API, the App State is also
shared with Cloud API and is not considered end-to-end encrypted.

Call Setup: Calls involving Cloud API are not considered end-to-end encrypted.
However, when Cloud API is linked as a companion, the SRTP master secret is
not distributed to the Cloud API, so such calls are considered end-to-end
encrypted.

Message History Syncing: If a user links Cloud API, a copy of messages from
recent chats is also transmitted to Cloud API in order for the user to manage
those conversations, and therefore the process of history syncing is not
considered end-to-end encrypted. The amount of history shared is also limited in
this case.

Companion Device Removal: If the device being removed is Cloud API, the
primary generates a new random Identity Key thereby invalidating all existing
companions and existing end-to-end encrypted Signal sessions.

Groups: Groups involving Cloud API are not considered end-to-end encrypted.
When group messages are not end-to-end encrypted, it is clearly indicated by a
system message. Cloud API cannot join an end-to-end encrypted group, nor can a

37 WhatsApp Encryption Overview

https://faq.whatsapp.com/807150397208763/?locale=en_US

AUGUST 19, 2024

user or a group admin add Cloud API to an end-to-end encrypted group. The
Sender Key is distributed to Cloud API for groups created by Cloud API. However,
when Cloud APl is linked as a companion, the Sender Key is not distributed to
Cloud API and such a group is considered end-to-end encrypted.

Linking Cloud API to the WhatsApp Business App

As of 2024, businesses may link Cloud APl as a companion to their WhatsApp
Business app.

As a result, the end-to-end encryption state changes as follows:

1. WhatsApp does not consider 1-1 chats with businesses that link Cloud
API to be end-to-end encrypted since messages in these 1-1 chats are
shared by the business to Meta to process the messages on behalf of
the business.

2. The sender transmits group messages, broadcast list messages, calls,
status and live location updates only to the WhatsApp Business app, but
not to linked Cloud API.

3. When a 1-1 chat with an organization is not end-to-end encrypted, it is
clearly indicated by a system message.

Invocation Message Responses

Users on WhatsApp can now interact with automated chats (including Meta
services, such as Meta Al), by first sending a special type of message called an
Invocation Message.

Invocation Messages are optimized for messages that are sent sentence by
sentence versus an entire message at a time. This is most suited for automated
chats.

Invocation Messages can only be initiated by a user, whether it's a user
interacting with an automated chat account directly, or in chats between two or
more users, where an automated chat account is @mentioned in the
conversation.

All personal messages that are sent in an individual chat or group remain end to
end encrypted. When an Invocation Message is sent, a copy of only that message
is securely sent to an automated chat account.

When a user sends an Invocation Message to an automated chat account:

1. The sender generates a random 32-byte Message Secret.

38

WhatsApp Encryption Overview

https://faq.whatsapp.com/807150397208763/?locale=en_US

AUGUST 19, 2024

2. The sender derives an Invoke Message Secret from the Message Secret:
HKDF-SHA256 (1length=32, key=Message Secret, info="Invoke
Message").

3. The message to the automated chat account, other users’ devices, and if
relevant, other participants in the chat is sent using the Signal protocol
encryption.

The message to the automated chat account contains the Message Secret if
this account is a participant of the chat in which the Invocation Message is being
sent. Otherwise, it contains the Invoke Message Secret.

The message to all other recipients contains the Message Secret.

4. In order to improve the privacy and performance of Invocation Message
Responses, they are encrypted with the Invoke Message Secret previously
shared with other participants of the chat in the Invocation Message. As the
automated chat account generates the response (an initial response or an
update to the initial response), it derives a Message Encryption Key from the
Invoke Message Secret: HKDF-SHA256 (1length=32, key=Invoke
Message Secret, info=Message Identifier || Invoker
Identifier || Invocation Responder Identifier)

5. The automated chat account then encrypts the entire message payload with
the Message Encryption Key using AES-256-GCM(taglLength=16,
iv=random 12 bytes, aad=Message Identifier || Invoke
Responder Identifier) to produce an authenticated ciphertext.

6. The automated chat account then transmits this ciphertext and the IV to the
server, which does server-side fan-out to all participants of the chat the
Invocation Message was sent to.

7. Upon receipt of the Invoking Message Response from the automated chat
account, participants who received a message from the sender in step 3b derive
aInvoke Message Secret fromthe Message Secret asin step 2, then
calculate the Message Encryption Key asin step 4, and Additional data as in
step 5. Finally, they decrypt the message using AES-256-GCM.

8. The latest update (according to the sender-generated timestamp) to the
Invocation Message Response is displayed to the user and all previous updates
are discarded.

Encryption Has No Off Switch

All chats use the same Signal protocol outlined in this whitepaper, regardless of
their end-to-end encryption status. The WhatsApp server has no access to the
client’s private keys, though if a business user delegates operation of their

39

WhatsApp Encryption Overview

AUGUST 19, 2024

Whatsapp Business API to a vendor, that vendor will have access to their private
keys - including if that vendor is Meta.

When chatting with an organization that uses the WhatsApp Business API,
WhatsApp determines the end-to-end encryption status based only on the
organization's choice of who operates its endpoint.

The encryption status of an end-to-end encrypted chat cannot change without
the change being visible to the user via a system message.

Displaying End-to-End Encryption
Status

Across all our services, WhatsApp makes the end-to-end encryption status of a
chat clear. If the user's WhatsApp client sees that it's communicating with a
business that uses the WhatsApp Business API, the client will display this to the
user. The user can also double check the encryption status within the chat or in
the business info section of their app.

Conclusion

All WhatsApp messages are sent with the same Signal protocol outlined above.
WhatsApp considers all messages, voice calls, and video calls sent between all
devices controlled by a sender user and all devices controlled by a recipient user
to be end-to-end encrypted. Communications with a recipient who elects to use a
vendor to manage their WhatsApp Business API are not considered end-to-end
encrypted. If this occurs, WhatsApp makes it clear to users within the chat via a

system messaqge.

Between companion devices, WhatsApp message history syncing and app state
syncing are protected by end-to-end encryption, except when a companion device
is Cloud API. WhatsApp does not consider communications with Meta services,
or communications with businesses using Cloud API, to be end-to-end encrypted.

The Signal Protocol library used by WhatsApp is based on the Open Source
library, available here:

http://github.com/whispersystems/libsignal-protocol-java/

40

WhatsApp Encryption Overview

https://faq.whatsapp.com/807150397208763/?locale=en_US
https://faq.whatsapp.com/807150397208763/?locale=en_US

