The question "How to calculate the hash of a string literal using only the C preprocessor?" is valid, however I think you're adding a red-herring by including details about __FILE__ and logging ID's.
This means anyone answering needs to solve the problem you describe, or answer the question on hashing a string with the pre-processor (which may not be a good solution in your particular case!).
As it happens, __FILE__ expands to variable, not a literal string (GCC at least), so you will need to define the filename as a constant. You could use the build system to pass along a define for each for example.
As others have pointed out you can calculate the hash and pass this in via the build-system, although this avoids the question about hashing a sting literal.
Whatever the case, this question comes up when I searched for using the pre-processor for hashing, and none of the answers cover this, so heres is an answer that covers the string hashing part.
This is possible, albeit quite verbose
/** * Implement compile-time string hashing on string literals. * * This macro implements the widely used "djb" hash apparently posted * by Daniel Bernstein to comp.lang.c some time ago. The 32 bit * unsigned hash value starts at 5381 and for each byte 'c' in the * string, is updated: ``hash = hash * 33 + c``. This * function uses the signed value of each byte. * * note: this is the same hash method that glib 2.34.0 uses. */ #define SEED 5381 #if 0 // correct but causes insane expansion # define _SH(e, c) (((e) << 5) + (e) + (unsigned char)(c)) #elif defined(__GNUC__) // Use statement-expression extension # define _SH(e, c) ({ unsigned int _e = (unsigned int)(e); (_e << 5) + _e + (unsigned char)c; }) #else // use an inline function, the compiler will be able to optimize this out. static inline unsigned int _SH(unsigned int e, unsigned char c) { unsigned int _e = (unsigned int)e; return (_e << 5) + _e + (unsigned char)c; } #endif #define _SH_1(a) _SH(SEED, (a)[0]) #define _SH_2(a) _SH(_SH_1(a), (a)[1]) #define _SH_3(a) _SH(_SH_2(a), (a)[2]) #define _SH_4(a) _SH(_SH_3(a), (a)[3]) #define _SH_5(a) _SH(_SH_4(a), (a)[4]) #define _SH_6(a) _SH(_SH_5(a), (a)[5]) #define _SH_7(a) _SH(_SH_6(a), (a)[6]) #define _SH_8(a) _SH(_SH_7(a), (a)[7]) #define _SH_9(a) _SH(_SH_8(a), (a)[8]) #define _SH_10(a) _SH(_SH_9(a), (a)[9]) #define _SH_11(a) _SH(_SH_10(a), (a)[10]) #define _SH_12(a) _SH(_SH_11(a), (a)[11]) #define _SH_13(a) _SH(_SH_12(a), (a)[12]) #define _SH_14(a) _SH(_SH_13(a), (a)[13]) #define _SH_15(a) _SH(_SH_14(a), (a)[14]) #define _SH_16(a) _SH(_SH_15(a), (a)[15]) #define _SH_17(a) _SH(_SH_16(a), (a)[16]) #define _SH_18(a) _SH(_SH_17(a), (a)[17]) #define _SH_19(a) _SH(_SH_18(a), (a)[18]) #define _SH_20(a) _SH(_SH_19(a), (a)[19]) #define _SH_21(a) _SH(_SH_20(a), (a)[20]) #define _SH_22(a) _SH(_SH_21(a), (a)[21]) #define _SH_23(a) _SH(_SH_22(a), (a)[22]) #define _SH_24(a) _SH(_SH_23(a), (a)[23]) #define _SH_25(a) _SH(_SH_24(a), (a)[24]) #define _SH_26(a) _SH(_SH_25(a), (a)[25]) #define _SH_27(a) _SH(_SH_26(a), (a)[26]) #define _SH_28(a) _SH(_SH_27(a), (a)[27]) #define _SH_29(a) _SH(_SH_28(a), (a)[28]) #define _SH_30(a) _SH(_SH_29(a), (a)[29]) #define _SH_31(a) _SH(_SH_30(a), (a)[30]) #define _SH_32(a) _SH(_SH_31(a), (a)[31]) // initial check prevents too-large strings from compiling #define STRHASH(a) ( \ (void)(sizeof(int[(sizeof(a) > 33 ? -1 : 1)])), \ (sizeof(a) == 1) ? SEED : \ (sizeof(a) == 2) ? _SH_1(a) : \ (sizeof(a) == 3) ? _SH_2(a) : \ (sizeof(a) == 4) ? _SH_3(a) : \ (sizeof(a) == 4) ? _SH_3(a) : \ (sizeof(a) == 5) ? _SH_4(a) : \ (sizeof(a) == 6) ? _SH_5(a) : \ (sizeof(a) == 7) ? _SH_6(a) : \ (sizeof(a) == 8) ? _SH_7(a) : \ (sizeof(a) == 9) ? _SH_8(a) : \ (sizeof(a) == 10) ? _SH_9(a) : \ (sizeof(a) == 11) ? _SH_10(a) : \ (sizeof(a) == 12) ? _SH_11(a) : \ (sizeof(a) == 13) ? _SH_12(a) : \ (sizeof(a) == 14) ? _SH_13(a) : \ (sizeof(a) == 15) ? _SH_14(a) : \ (sizeof(a) == 16) ? _SH_15(a) : \ (sizeof(a) == 17) ? _SH_16(a) : \ (sizeof(a) == 18) ? _SH_17(a) : \ (sizeof(a) == 19) ? _SH_18(a) : \ (sizeof(a) == 20) ? _SH_19(a) : \ (sizeof(a) == 21) ? _SH_20(a) : \ (sizeof(a) == 22) ? _SH_21(a) : \ (sizeof(a) == 23) ? _SH_22(a) : \ (sizeof(a) == 24) ? _SH_23(a) : \ (sizeof(a) == 25) ? _SH_24(a) : \ (sizeof(a) == 26) ? _SH_25(a) : \ (sizeof(a) == 27) ? _SH_26(a) : \ (sizeof(a) == 28) ? _SH_27(a) : \ (sizeof(a) == 29) ? _SH_28(a) : \ (sizeof(a) == 30) ? _SH_29(a) : \ (sizeof(a) == 31) ? _SH_30(a) : \ (sizeof(a) == 32) ? _SH_31(a) : \ (sizeof(a) == 33) ? _SH_32(a) : \ 0) // last zero is unreachable // only for comparison unsigned int strhash_func(const void *str) { const signed char *p; unsigned int h = 5381; for (p = str; *p != '\0'; p++) { h = (h << 5) + h + (unsigned int)*p; } return h; } /* -------------------------------------------------------------------- */ #include <stdio.h> #define TEST_STR1 "Hello World" #define TEST_STR2 "Testing 123" int main(void) { unsigned int A = STRHASH(TEST_STR1); unsigned int B = STRHASH(TEST_STR2); printf("String hash: const %u <- '%s'\n", STRHASH(TEST_STR1), TEST_STR1); printf("String hash: const %u <- '%s'\n", STRHASH(TEST_STR2), TEST_STR2); printf("String hash: dyn %u <- '%s'\n", strhash_func(TEST_STR1), TEST_STR1); printf("String hash: dyn %u <- '%s'\n", strhash_func(TEST_STR2), TEST_STR2); #if defined(__GNUC__) printf("Is this known at compile time?, answer is: %d\n", __builtin_constant_p(A)); #endif }
Note, for some reason Clang 5.0 prints answer is: 0, however on closer inspection is does in fact know the value at compile time, __builtin_constant_p just doesn't seem to work as GCC does.
"foo.c"[0]+9*"foo.c"[1]are not constant expressions, but when used in code, may still actually compile to constants.-DFILE_ID=$$(myhashpgm $<)in your makefile.