I believe you can solve this in linear time with a pointer chasing algorithm.
Here's the intuition. Start off a pointer at the left side of the array. Keep moving it to the right, tracking the sum of the elements you've seen so far, until you either hit exactly M (done!), your total exceeds M (stop for now, adding in more elements only makes it worse), or you hit the end of the array without reaching at least M (all the elements combined are too small). If you do end up in a case where the sum exceeds M, you can be guaranteed that no subarray starting at the beginning of the array adds up to exactly M, since you tried all of them and they were either too small or too big.
Now, start a second pointer at the first element and keep advancing it forward, subtracting out the current element, until you either get to exactly M (done!), you reach the first pointer (stop for now), or the total drops below M (stop for now). All the elements you skipped over with this pointer can't be the starting point of the subarray you're looking for. At this point, start marching the first pointer forward again.
Overall, each pointer advances at most n times and you do O(1) work per step, so this runs in time O(n). Plus, it uses only O(1) space, which is as good as it's going to get!